Синтез и анализ КЭМ пространственных конструкций сложной формы

Рефераты, курсовые, дипломные, контрольные (предпросмотр)

Тип: Дипломная работа. Файл: Word (.doc) в архиве zip. Категория: Математика
Адрес этого реферата http://referat-kursovaya.repetitor.info/?essayId=20125 или
Загрузить
В режиме предпросмотра не отображаются таблицы, графики и иллюстрации. Для получения полной версии нажмите кнопку «Загрузить». Рефераты, контрольные, дипломные, курсовые работы предоставляются в ознакомительных целях, не для плагиата.
Страница 3 из 4 [Всего 4 записей]« 1 2 3 4 »

Если рассмотреть кубический сплайн с переменными шагами, тогда на отрезке [xj-1, xj] он имеет следующее выражение [ 4 ] :

взяв от которого две производные получим :

Отсюда находим

Из требований непрерывности второй производной в точках получим систему линейных алгебраических уравнений относительно наклонов mj следующего вида :

Краевые условия представлены в следующем виде :

а) Если известны , то задаем

б) Производные аппроксимируем формулами численного дифференцирования третьего порядка точности (применение интерполяционного полинома Лагранжа [ 3 ] ) и, отбрасывая остаточные члены, полагаем :

в) В некоторых случаях бывают известны значения на концах отрезка [a,b], т. е. величины . Тогда требования приводят к краевым условиям :

Как видно (1.1) и (1.1.a) похожи, а (1.2) следует из (1.2.a) при hj = hj-1, т. е. случай с переменным шагом более общий, он и был положен в основу программы. Так как используется случай построения сплайна по трем точкам то краевые условия (1.4) и (1.4.a) выглядят следующим образом :

Дискретизация оболочковых конструкций

Процедуру дискретизации оболочковых конструкций рассмотрим на примере построения оболочки в основании которой лежит прямоугольная рама, и высотой в середине конструкции.

Задано : координаты опорных точек и высота в середине конструкции :

Т1= (x1, y1, z1);

Т2= (x2, y2, z2);

Т3= (x3, y3, z3);

Т4= (x4, y4, z4);

Т5= (x5, y5, z5).

Задаемся граничными условиями по контуру основания, которые задают форму оболочки в местах прилегания к основанию и вводим желаемую степень дискретизации.

Построение сетки узлов конечно-элементной модели (КЭМ) с помощью сплайн-интерполяции начинаем с построения кривой К0 по 3 точкам : опорной точки Т5 и 2 точкам на середине ребер основания, параллельных оси 0X. Задаемся числом участков по оси 0X и 0Y. Вычислив координаты границ участков и координаты точек на полученной кривой К0, строим с помощью сплайн-интерполяции семейство кривых К1, К2, ..., КN. Аналогично строим систему кривых К11, К12, ..., К1N, ортогональных к ранее построенным (рис. 2). В результате получаем сетку с пронумерованными узлами (рис. 3), которую "зашиваем" плоскими треугольными конечными элементами. Затем формируем файлы координат узлов и список конечных элементов (КЭ).

Дискретизация объемных конструкций

Процедуру дискретизации объемных конструкций рассмотрим на примере массива, ограниченного двумя криволинейными поверхностями и 4 плоскостями.

Задано : координаты опорных точек и высота каждой поверхности по отношению к своему основанию :

T11= (x1, y1, z1); T21= (x1, y1, z1);

T12= (x2, y2, z2); Т22= (x2, y2, z2);

T13= (x3, y3, z3); Т23= (x3, y3, z3);

T14= (x4, y4, z4); Т24= (x4, y4, z4);

T15= (x5, y5, z5). Т25= (x5, y5, z5).

Задаемся граничными условиями по контурам оснований, которые определяют форму поверхностей в местах прилегания к основаниям, и вводим желаемую степень дискретизации.

Далее каждую из поверхностей разбиваем как и в пункте 1.2.2. Так как в условии вводится одна степень дискретизации для обеих поверхностей, то разбиение на конечные элементы не представляет большого труда. Каждому узлу на одной поверхности ставится в соответствие узел на другой (рис. 4) они соединены штриховыми линиями. Таким образом получаем семейство шестигранников, которые и разбиваем на конечные элементы - тетраэдры (рис. 5, 6). В результате мы получаем файлы с координатами узлов и список конечных элементов, которые составляют основу исходных данных для расчета по программам, реализующим МКЭ.

Алгоритм дискретизации изменяемой поверхности

Процедуру дискретизации изменяемой поверхности рассмотрим на примере оболочки, в основании которой лежит прямоугольная рама, высотой в середине конструкции и номера узла, координата которого меняется.

Задано : координаты опорных точек и высота в середине конструкции :

Т1= (x1, y1, z1); Т2= (x2, y2, z2); Т3= (x3, y3, z3); Т4= (x4, y4, z4);

Т5= (x5, y5, z5).

Задаемся граничными условиями по контуру основания, которые задают форму оболочки в местах прилегания к основанию и вводим желаемую степень дискретизации.

Далее действуя, как и в пункте 1.2.2. разбиваем поверхность и получаем сетку узлов и, введя номер изменяемого узла, его новые координаты и степень дискретизации, проводим сплайн через три точки : измененную, и ближайшие точки пересечения кривой Кi с кривыми К1 и К3. И далее с учетом дополнительно введенной степени дискретизации разбиваем на конечные элементы пространство между Кi-1 и Кi+1, а также между К1 и К3. Перенумерация узлов проводится с учетом нового условия. На рисунке 7 кружком выделен узел, координата которого была изменена. Пунктирными линиями показаны сплайны, которые были построены дополнительно.

Алгоритмы анализа напряженно-деформированных состояний конечно-элементных моделей пространственных конструкций

Оценка прочности и жесткости оболочковых конструкций по результатам анализа МКЭ

После расчета МКЭ проводится анализ обширных массивов полученных результатов.

A. Пользователю предлагается ввести допустимые перемещения относительно оси 0X [X], оси 0Y [Y], оси OZ [Z] (в миллиметрах); допустимую угловую деформацию относительно оси 0X [Ux], относительно оси 0Y[Uy], относительно оси 0Z [Uz] (в ).Из файла результатов считываются перемещения узлов X, Y, Z, Ux, Uy, Uz. Вычисляем "запас" жесткости для каждого узла :

и выводит в файл узлы с недопустимой жесткостью, со всеми числовыми значениями.

B. Далее вводится допустимое напряжение [?] (в т/м2).

Из файла результатов считываются напряжения в каждом конечном элементе Nx, Ny, Txy.

.

Выводим КЭ с недостаточной прочностью.

Оценка прочности и жесткости объемных конструкций

После обработки данных методом конечных элементов следует провести обработку результатов расчетов, систематизировать их.

A. Пользователю предлагается ввести допустимые перемещения относительно оси 0X [X], оси 0Y [Y], оси OZ [Z] (в миллиметрах). Из файла результатов считываются перемещения узлов X, Y, Z. Вычисляем "запас" жесткости для каждого узла :

и выводит в файл узлы с недопустимой жесткостью, со всеми числовыми значениями.

B. Далее вводится допустимое напряжение [?] (в т/м2).

Из файла результатов считываются напряжения в каждом конечном элементе Nx, Ny, Txy.

Выводим КЭ с недостаточной прочностью.

Программа реализации синтеза и анализа конечно-элементных моделей пространственных конструкций

Программа Sintankem состоит из 8 модулей :

1. Obolochca( ) - этот модуль считывая из файла с расширением "dat" исходную информацию о размерности модели, количестве опорных точек, количестве исследуемых поверхностей и степени дискретизации производит их обработку. Если необходимо произвести дискретизацию поверхности с особенностью то продолжается ввод из файла данных номера точки, ее координаты и дополнительную степень дискретизации, т. е. выполнение пунктов 1.2.1 - 1.2.3. В результате мы получаем файлы с координатами узлов и список конечных элементов, которые составляют основу исходных данных для расчета по программам, реализующим МКЭ.

2. Spline( ) - этот модуль составляет систему линейных алгебраических наклонов относительно наклонов сплайна mi по формулам 1.2, 1.2.а, с учетом краевых условий 1.3, 1.5, 1.3.а, 1.5.а и 1.4, 1.4.а или , .

3. Metodgauss ( ) - реализует метод Гаусса.

4. SS3( ) - реализует формулу 1.1, 1.2.

5. Rez( ) - формирует файл результатов.

6. AnalizPeremNapraj( ) - оценка прочности и жесткости оболочковых и объемных конструкций по результатам анализа МКЭ.

7. Podgotovka_grafici( ) - проводит считывание файлов данных и переводит их к плоской задаче.

RSSСтраница 3 из 4 [Всего 4 записей]« 1 2 3 4 »


При любом использовании материалов сайта обязательна гиперссылка на сайт «Репетитор».
Разработка и Дизайн компании Awelan
www.megastock.ru
Проверить аттестат