Проектирование автоматической установки пожаротушения в помещение цеха вальцевания в процессе производства которого используется резина

Рефераты, курсовые, дипломные, контрольные (предпросмотр)

Тип: Курсовая работа. Файл: Word (.doc) в архиве zip. Категория: Технологии
Адрес этого реферата http://referat-kursovaya.repetitor.info/?essayId=21021 или
Загрузить
В режиме предпросмотра не отображаются таблицы, графики и иллюстрации. Для получения полной версии нажмите кнопку «Загрузить». Рефераты, контрольные, дипломные, курсовые работы предоставляются в ознакомительных целях, не для плагиата.
Страница 1 из 3 [Всего 3 записей]1 2 3 »

Введение.

Известно, что за последние десятилетия во многих сферах человеческой деятельности явно прослеживается громадный скачек в развитии науки и техники. В деятельности человека, по геометрической прогрессии, внедряется компьютеризация и автоматизация. Появляются новые строительные и отделочные материалы, дорогостоящее оборудование, высокие и наукоемкие технологии, которые более эффективные, но в тоже время могут нести в себе большую опасность, в том числе и пожарную. Не надо забывать о культурных ценностях, которые может утратить человечество по своей безопасности и халатности, потеря которых несравнима и неоценима ни с какими физическими ценностями. И чтобы снизить вероятность потерь, человек прибегает к различным мерам защиты. Человек старается максимизировать безопасность своего имущества, своей жизни как дома, так и на рабочем месте.

Одно из направлений защиты - противопожарная защита. Противопожарную защиту можно осуществить несколькими способами и видами. Например, внедрением систем Автоматической Противопожарной Защиты, (в дальнейшем АППЗ), которые являются одним из наилучших видов противопожарной защиты. Внедрение и правильное обслуживание пожарной автоматики, и систем АППЗ в целом, приводит к эффективной защите тех помещений где она установлена, путем обнаружения, сообщения и подавления очага горения в начальный момент пожара.

В тоже время, проектирование установок пожарной автоматики, является сложным процессом. От того насколько качественно он выполнен, зависит эффективность АППЗ. Поэтому, проектирование АППЗ должно предшествовать решение целого ряда вопросов, связанных с анализом пожарной опасности объекта, конструктивными, объемно-планировочными решениями и другими особенностями защищаемого объекта. Вот почему проектирование установок пожарной автоматики необходимо производить поэтапно, исходя из категории производства, класса возможного пожара, группы важности объекта, а также механизма и способа тушения.

Анализ пожарной опасности защищаемого объекта.

Дано помещение цеха вальцевания, размерам 14х10х6 м, в технологическом процессе которого применяется резина. Помещение II степени огнестойкости, отопление есть, вентиляция отсутствует, постоянно открытых проемов нет, пожаровзрывоопасность электрооборудования по ПУЭ-П-IIа. Пожарная нагрузка в цехе составляет 210 кг*м-2. Линейная скорость распространения горения Vл=0,018 м*с-1, массовая скорость выгорания Vм=0,012 кг*м-2*с-1, низшая теплота сгорания Qн= 33,5*106 Дж*кг-1 0. Коэффициент дымообразования kд, пламенного горения составляет 0,052 кг*кг-1, тления - 0,14 кг*кг-1. Расстояние до станции пожаротушения - 45 м, гарантированный напор Нг=10 м.

Зная пожарную нагрузку объекта, рассчитаем полное время свободного горения:

часа

Энергию, которая может быть выделена при сгорании, рассчитаем по формуле:

Е =?*Qн*P*F=0,95*33,5*106*210*140 = 9,3*1011 Дж,

где - - коэффициент полноты сгорания (0,95 для твердых сгораемых материалов и 0,75 для жидкостей), Qн - низшая теплота сгорания, Дж*кг-1, P - пожарная нагрузка, кг*м-2, F - площадь пола помещения, м2.

Моделирование развития возможного пожара

Моделирование развития пожара позволяет определить критическое время свободного развития пожара ?кр, которое связывают с предельно-допустимым временем развития пожара. При горении твердых сгораемых материалов ?кр определяется либо временем охвата пожаром всей площади помещения, либо, если это произойдет раньше, временем достижения среднеобъемной температуры в помещении значения температуры самовоспламенения находящихся в нем материалов, которая для данного случая равна 350°С (справочник Баратова).

Вид и тип АППЗ можно устанавливать, придерживаясь условного правила, если ?кр - 10 минут, то для защиты объекта можно ограничиться внедрением АПС. Когда ?кр 10 минут, то рекомендуется автоматическое тушение.

Как видим, моделирование развития пожара заключается в построении двух функций Fп= ?(?) и t = ?(?). Где Fп - площадь пожара, м2; t - среднеобъемная температура, - - текущее время на отрезке не менее 600 секунд (10 минут).

Динамика пожара всегда связана с местом его возникновения, распределением пожарной нагрузки и газообменом. Следует признать, что на начальной стадии (до вскрытия остекления при температурах 300°С) наиболее опасным будет центральный пожар по равномерно распределенной пожарной нагрузке. Отметим также, что для простоты курсового проектирования пожарную нагрузку защищаемого объекта принимаем однородной, а распространение огня по конструкциям здания отсутствует. Размещение и габариты технологического оборудования не сообщаются. Но в тоже время это не дает основания для проектирования световых и ультразвуковых ПИ.

Площадь наиболее опасного центрового пожара Fп по однородной равномерно распределенной пожарной нагрузке, пока он имеет круговую форму, может быть рассчитан по выражению:

где lt - путь, пройденный фронтом огня из точки воспламенения, м. lt = 0,5Vл - + Vл (?*-10) для твердых сгораемых материалов и lt = Vл - при горении жидкостей. - и ?* - текущее время. - = 1, 2, 3, 5, 7, 10 минут.

Слагаемое, содержащее ?*, учитывается, когда текущее время расчета Fп должно быть принято более 10 минут.

По результатам данного расчета следует построить график зависимости площади пожара от времени: Fп = ?(?) (рис. 1) и определить tкр.

При - = 1 мин lt = 0,5*0,018*1*60 = 0,54 м; Fп = 3,14*0,542 = 0,915 м2

При - = 2 мин lt = 0,5*0,018*2*60 = 1,08 м; Fп = 3,14*1,082 = 3,66 м2

При - = 3 мин lt = 0,5*0,018*3*60 = 1,62 м; Fп = 3,14*1,622 = 8,24 м2

При - = 5 мин lt = 0,5*0,018*5*60 = 2,7 м; Fп = 3,14*2,72 = 22,89 м2

При - = 7 мин lt = 0,5*0,018*7*60 = 3,78 м; Fп = 3,14*3,782 = 44,8 м2

При - = 10 мин lt = 0,5*0,018*10*60 = 5,4 м; Fп = 3,14*5,42 = 91,56 м2

По полученным данным строим график зависимости площади пожара Fп времени от ?:

Более сложным является моделирование температуры в помещении пожара. Однако ?кр. по температурным проявлениям внутренних пожаров может быть найдено достаточно надежно, если использовать, не учитывающее потерь, известное приближение для расчета среднеобъемной температуры t:

где tо - начальная температура в помещении, °С; q - теплопроизводительность пожара на единицу площади ограждающих конструкций помещения:

[кг*м-2*с-1*Дж*кг-1*м2*м-2] = [Дж*с-1*м-2] = [Вт*м-2]

F = 2аb + 2 ah + 2 bh - площадь ограждающих конструкций, м2;

a - длина, b - ширина, h - высота помещения. В данном случае площадь ограждающих конструкций на ходим по формуле:

F = 2*14*10 + 2*14*6 + 2*10*6 = 280 + 168 + 120 = 568 м2.

Для построения графика t = tо + ?(?) (рис. 2) необходимо получить пять-семь расчетных значений t в интервале времени до 10 минут пожара. ?кр определяем по данному графику относительно предельно допустимой температуры, превышение которой приведет к резкому разрастанию пожара по площади и объему.

При - =1 мин

При - = 2 мин: q = 2460,9 Вт*м-2; t = 210,9°С

При - = 3 мин: q = 5540,2 Вт*м-2; t = 306,6°С

При - = 5 мин: q = 15390 Вт*м-2; t = 498,1°С

При - = 7 мин: q = 30121 Вт*м-2; t = 688,2°С

На основании рассмотренных графических моделей F= ?(?) и to = 1t+?(?) в качестве более реального ?кр свободного развития пожара выбирается меньшее из двух его найденных значений, т.е. в нашем случае - второй, когда критическое время развития пожара ?кр составляет между 3 и 4 минутой, (?кр = 3,5 мин.)

Оценка эффективности выбранных средств АППЗ.

Так как задание не содержит условий, позволяющих использование

световых и ультразвуковых извещателей, поэтому выбор можем осуществить только между тепловыми и дымовыми извещателями. При этом, безусловно, должны руководствоваться рекомендациями СНиП 2.01.02-84.

Эффективность средств АППЗ тем выше, чем меньше время обнаружения пожара ?об относительно ?кр:

где ?пор и ?ипи - соответственно пороговое время срабатывания и инерционность пожарного извещателя. ?ипи является рабочей характеристикой приборов (справочное данные).

RSSСтраница 1 из 3 [Всего 3 записей]1 2 3 »


При любом использовании материалов сайта обязательна гиперссылка на сайт «Репетитор».
Разработка и Дизайн компании Awelan
www.megastock.ru
Проверить аттестат