Полимеры в медицине

Рефераты, курсовые, дипломные, контрольные (предпросмотр)

Тип: Реферат. Файл: Word (.doc) в архиве zip. Категория: Химия, Медицина
Адрес этого реферата http://referat-kursovaya.repetitor.info/?essayId=23745 или
Загрузить
В режиме предпросмотра не отображаются таблицы, графики и иллюстрации. Для получения полной версии нажмите кнопку «Загрузить». Рефераты, контрольные, дипломные, курсовые работы предоставляются в ознакомительных целях, не для плагиата.
Страница 1 из 3 [Всего 3 записей]1 2 3 »

Полимеры - высокомолекулярные соединения (ВМС), вещества с высокой молекулярной массой (от нескольких тысяч до нескольких миллионов), в которых атомы, соединенные химическими связями, образуют линейные или разветвленные цепи, а также пространственные трехмерные структуры. К полимерам относятся многочисленные природные соединения: белки, нуклеиновые кислоты, целлюлоза, крахмал, каучук и другие органические вещества. Большое число ВМС получают синтетическим путем на основе простейших соединений и элементов нефтяного, углехимического, лесохимического и минерального происхождения в результате реакций полимеризации, поликонденсации и химических превращений одних полимеров (природных и синтетических) в другие. Особую группу составляют неорганические полимеры (пластичная сера, силикаты и др.).

В зависимости от строения основной цепи ВМС делятся на линейные, разветвленные и трехмерные (пространственные) структуры. Линейные и разветвленные цепи можно превратить в трехмерные действием химических агентов, света и радиации, а также путем "сшивания" (вулканизации). В качестве примеров можно привести вулканизацию каучука,отвердение фенолформальдегидных, эпоксидных и полиэфирных смол, образование прочных пленок и покрытий из высыхающих масел, природных смол, эпоксидов и др.

Линейные ВМС могут иметь как кристаллическую, так и аморфную (стеклообразную) структуру. Разветвленные и трехмерные полимеры, как правило, являются аморфными. При нагревании они переходят в высокоэластическое состояние подобно каучуку, резине и другим эластомерам. При действии особо высоких температур, окислителей, кислот и щелочей органические и элементоорганические ВМС подвергаются постепенному разложению, образуя газообразные, жидкие и твердые (коксы) соединения.

Физико-механические свойства линейных и разветвленных полимеров во многом связаны с межмолекулярным взаимодействием за счет сил побочных валентностей. Так, например, молекулы целлюлозы взаимодействуют между собой по всей длине молекул, и это явление обеспечивает высокую прочность целлюлозных волокон. А разветвленные молекулы крахмала взаимодействуют лишь отдельными участками, поэтому не способны образовывать прочные волокна. Особенно прочные волокна дают многие синтетические полимеры (полиамиды, полиэфиры, полипропилен и др.), линейные молекулы которых расположены вдоль оси растяжения. Трехмерные структуры могут лишь временно деформироваться при растяжении, если они имеют сравнительно редкую сетку (подобно резине), а при наличии густой пространственной сетки они бывают упругими или хрупкими в зависимости от строения. ВМС делятся на две большие группы: гомоцепные, если цепь состоит из одинаковых атомов (в том числе карбоцепные, состоящие только из углеродных атомов), и гетероцепные, когда цепь включает атомы разных элементов. Внутри этих групп полимеры подразделяются на классы в соответствии с принятыми в химической науке принципами.

Так, если в основную или боковые цепи входят металлы, сера, фосфор, кремний и др., полимеры относят к элементоорганическим соединениям.

Изучение ВМС началось лишь в XIX в., а принципы их строения были установлены в 20-30-х. гг. XX в. В 1920 г. Немецкий ученый Г.Штаудингер, основываясь на теории химического строения органических веществ, высказал гипотезу о "макромолекулярном" строении полимеров и связал с этим их физико-химические свойства (например, вязкость растворов). В дальнейшем разработка этой гипотезы привела к созданию теории строения макромолекул, на основе которой стал производиться синтез все новых и новых классов полимеров с заданными свойствами.

Развитию теории строения полимеров способствовали труды С.В.Лебедева, П.П.Шорыгина, С.С.Медведева, В.А.Каргина, В.В.Коршака, У.Карозерса, П.Флори, Г.Марка и многих других ученых разных стран.

Полимерные материалы делят на три основные группы: пластические массы, каучуки, химические волокна. Они широко применяются во многих областях человеческой деятельности, удовлетворяя потребности различных отраслей промышленности, сельского хозяйства, медицины, культуры и быта.

Есть два типа химических реакций, приводящих к превращению мономеров в полимеры: поликонденсация и полимеризация. Они отличаются химическим строением мономеров, закономерностями протекания процесса и, как правило, свойствами получаемых продуктов.

Для поликонденсации необходимы мономеры, содержащие в каждой молекуле не менее двух реакционно-способных групп, например гликоли HO- R- OH, аминокислоты H N- R- COOH, диизоцианаты OCN- R- NCO и т.д. Сам ход процесса поликонденсации многостадийный. Одна активная группа одной молекулы мономера реагирует с одной группой другой молекулы - образуется димер опять с двумя активными группами. Например, химический синтез полиэфирного волокна лавсана из терефталевой кислоты и этиленгликоля начинается с такой реакции:

HOCHCHOH + HOOC-CH-COOH --- HOCHCH-OOC-CH--COOH + HO

Димер реагирует далее с мономером или с димером, давая тример или тетрамер, и т.д. Иногда при таких процессах выделяются низкомолекулярные продукты (вода, аммиак и т.д.), иногда - нет. Прежде выделение побочных низкомолекулярных веществ считали обязательным признаком реакции поликонденсации, но синтез высокомолекулярных соединений - полиуретанов показывает, что этот признак совсем не обязательный:

HOCH CH OH + OCN - R - NCO HOC H O - C - N - R - NCO II I O H

Если реакцию вести достаточно долго, то теоретически все молекулы, находящиеся в реакционной среде, должны сконденсироваться в одну сверхгигантскую макромолекулу. В действительности так не происходит. Рост молекул прекращается значительно раньше. Причины различные: небольшой избыток одного мономера, наличие примесей, повышение вязкости среды и т.д. Немаловажную роль играет и то, что многие реакции поликонденсации обратимы.

Проходя через стадии ди-, три-, тетрамеров и т.д., молекулярная масса продукта нарастает медленно, и высокомолекулярные соединения- полимеры- обычно образуются лишь к концу процесса, при общем превращении 95-99% мономеров. Но зато химики могут приостановить процесс на промежуточной стадии и сформовать изделие сначала из легкоплавких олигомеров, а затем довести реакцию поликонденсации до конца и получить прочный, теплостойкий и нерастворимый продукт (особенно если в синтезе участвуют мономеры с тремя и более функциональными группами). Эта особенность поликонденсации широко используется в промышленности, например при синтезе и формовании пенополиуретанов, фенолформальдегидных смол и других материалов, на основе которых получают пластические массы, и т.п.

Характерные особенности полимеризации в том, что прежде всего вступают в нее только мономеры, содержащие в молекуле двойную связь C=C, C=N или C=O, тройную связь либо циклическую группировку, способную раскрываться. Для того чтобы мономер вступил в реакцию полимеризации, к нему надо добавить (или создать в его среде) инициирующий активный центр: свободный радикал, активный ион или активный координационный комплекс. И наконец, еще одна специфическая особенность реакций полимеризации состоит в том, что присоединение молекул мономера к активному центру происходит медленнее, чем последующее наращивание полимерной цепи присоединением молекул мономера друг к другу.

В результате после введения активных центров в массу мономера, прервав реакцию в любой момент,можно найти там большее или меньшее количество непрореагировавшего мономера и какое-то количество высокомолекулярного полимера. Выделить из такой смеси ди-, три-, тетрамеры и прочие промежуточные продукты полимеризации обычно невозможно - их нет. Такие процессы называются цепными реакциями.

Хотя впервые полимеризация была описана еще в XIX в. как побочный процесс смолообразования при выделении некоторых органических веществ (стирола, формальдегида и др.), теоретическое объяснение ее механизма стало возможно лишь в 30-х. гг. нашего столетия, на основе созданной советским академиком Н.Н.Семеновым и английским ученым С.Хиншелвудом теории цепных процессов.

Есть и еще одно отличие полимеризации от поликонденсации: обычно полимеризационным путем получают полимеры из мономеров, содержащих лишь одну реакционноспособную группу: одну С=С связь, одну С=О группу и т.д. Типичные примеры - химические синтезы полиэтилена и полиформальдегида:

RSSСтраница 1 из 3 [Всего 3 записей]1 2 3 »


При любом использовании материалов сайта обязательна гиперссылка на сайт «Репетитор».
Разработка и Дизайн компании Awelan
www.megastock.ru
Проверить аттестат