Исследование наилучших приближений непрерывных периодических функций тригонометрическими полиномами

Рефераты, курсовые, дипломные, контрольные (предпросмотр)

Тип: Дипломная работа. Файл: Word (.doc) в архиве zip. Категория: Информатика, IT
Адрес этого реферата http://referat-kursovaya.repetitor.info/?essayId=20131 или
Загрузить
В режиме предпросмотра не отображаются таблицы, графики и иллюстрации. Для получения полной версии нажмите кнопку «Загрузить». Рефераты, контрольные, дипломные, курсовые работы предоставляются в ознакомительных целях, не для плагиата.
Страница 1 из 4 [Всего 4 записей]1 2 3 4 »

Введение

Дипломная работа посвящена исследованию наилучших приближений непрерывных периодических функций тригонометрическими полиномами. В ней даются необходимые и достаточные условия для того, чтобы наилучшие приближения имели заданный (степенной) порядок убывания.

Дипломная работа носит реферативный характер и состоит из "Введения" и восьми параграфов.

В настоящей работе мы рассматриваем следующие задачи:

При каких ограничениях на непрерывную функцию F(u) (-1 - u - +1) её наилучшие приближения En [F;-1,+1] обыкновенными многочленами имеют заданный порядок

При каких ограничениях на непрерывную периодическую функцию f (x) её наилучшее приближение En[f] тригонометрическими полиномами имеют заданный порядок

Подстановка u=cos(x) сводит задачу 1 к задаче 2. Достаточно, следовательно, рассматривать лишь задачу 2.

Мы ограничимся случаем, когда

, для некоторого - ,

где - функция сравнения р-го порядка и для

С.Н.Бернштейн, Д.Джексон и Ш.Валле-Пуссен получили зависимости между оценками сверху для En[f] и дифференциальными свойствами f. Некоторые дополнения к их теоремам доказаны А.Зигмундом. нам предстоит, поэтому, получить зависимости между дифференциальными свойствами f и оценками En[f] снизу. Впервые задачами типа 1 занимался С.Н.Бернштейн. А именно, им получено ассимптотическое равенство:

,

где - - некоторое число.

Наша основная теорема формулируется следующим образом:

Пусть

Для того чтобы

необходимо, чтобы для любого натурального k?, и достаточно, чтобы для некоторого натурального k?

где

Изложим теперь кратко содержание каждого из параграфов работы.

В §1 даётся ряд вспомогательных определений, которые понадобятся в дальнейшей работе.

В §2 выводятся основные свойства модулей непрерывности высших порядков. Почти все эти свойства используются в дальнейшем тексте.

§3 посвящен обобщению теоремы Джексона. Как известно, Джексон доказал следующую теорему: если f имеет непрерывную r-ую производную f (r) , то

Таким образом, теорема Джексона дает оценку сверху для наилучших приближений, если известны дифференциальные свойства аппроксимируемой функции.

В 1947 г. появилась работа С.Н.Бернштейна [1]. Одна из теорем этой работы содержит в качестве следствия такое предложение: пусть

Тогда

В §3 доказываем:

В §4 формулируется доказанное в работе С.Б.Стечкина [2] обобщение известного неравенства С.Н.Бернштейна [3], [4] для производных от тригонометрического полинома. Мы приводим затем ряд следствий из нашего неравенства (*). Они играют существенную роль при доказательстве теорем §5.

В §5 рассматривается следующая задача. Пусть тригонометрический полином tn , близок в равномерной метрике к заданной функции f или последовательность полиномов {tn} достаточно хорошо аппроксимирует заданную функцию f. Как связаны тогда дифференциальные свойства f с дифференциальными свойствами tn?

Если tn , образуется из f посредством регулярного метода суммирования рядов Фурье, то ответ тривиален: для того чтобы , необходимо и достаточно, чтобы равномерно относительно n. (f?Hk[?], если ).

Оказывается, что этот результат сохраняется и для полиномов наилучшего приближения: для того, чтобы равномерно относительно n.

Отметим еще один результат параграфа: для того чтобы , необходимо и достаточно чтобы

.

§6 посвящён "обратным теоремам" теории приближения.

Известно предложение: пусть

.

Тогда, если - не целое, r=[?], ?=?-r, то f имеет нерперывную производную .

Случай целого ??рассмотрен Зигмундом. В этом случае

.

Нетрудно показать, что эти два предложения эквивалентны следующему: пусть 0?k и

.

Тогда

.

В работе [3] С.Н.Бернштейн доказал также эквивалентность условий и .

Мы переносим эти теоремы на условия вида

Кроме того, в этом параграфе доказано, например, такое предложение: пусть k - натуральное число и

;

для того, чтобы , необходимо и достаточно выполнение условия

.

В конце параграфа даются уточнения теорем Валле-Пуссена.

В §7 доказывается основная теорема. Мы даём здесь же оценку En[f] снизу, если

.

Именно, тогда

Случай ?=0 установлен С.Н.Бернштейном [3].

В §8 мы рассматриваем несколько решений задач с использованием различных модулей непрерывности.

Некоторые вспомогательные определения.

В работе рассматриваются непрерывные функции f с периодом 2? и их приближение тригонометрическими полиномами. Через tn(x) обозначается тригонометрический полином порядка не выше n, а через tn*(x)=tn*(x,f)-тригонометрический полином, наименее уклоняющийся от f среди всех tn(x). Мы полагаем и пишем

Введём ряд определений.

Определение 1. При каждом фиксированном классом Липшица порядка - называется множество всех непрерывных функция f, модуль непрерывности каждой из которых удовлетворяет условию

где С8-какая-нибудь положительная постоянная, которая не зависит от - и которая, вообще говоря, является различной для разных функций. Этот класс обозначается H? или Lip ??

Определение 2. Обозначим при фиксированном натуральном r через W(r)L класс функций f, которая имеет абсолютно непрерывные производные до (r-1) порядка и у которой r-я производная принадлежит классу L.

Определение 3. Для непрерывной на [a,b] функции f (x) назовём модулем непрерывности первого порядка или же просто модулем непрерывности функцию ???????f;??, определённую на [0, b-a] при помощи следующего равенства:

или, что то же самое,

Свойства модуля непрерывности:

Доказательство. Свойство 1) вытекает из определения модуля непрерывности.

Свойство 2) вытекает из того, что при больших - нам приходится рассматривать sup на более широком множестве значений h. Свойство 4) следует из того, что если мы число представим в виде h=h1+h2, и , то получим

Из неравенства (1.2) вытекает, что если то т.е.

Теперь докажем свойство 3). Так как функция f (x) равномерно непрерывна на [a,b], то при и, следовательно, для любых ?,

а это и означает, что функция

непрерывна.

Определение 4. Пусть функция f (x) определена на сегменте [a,b]. Тогда для любого натурального k и любых и h0 таких, что k-й разностью функции f в точке x с шагом h называется величина

а при и h0 таких, что k-й симметричной разностью - величина

Лемма 1. При любых натуральных j и k справедливо равенство

Доказательство. Действительно, так как при любом натуральном k

то

Лемма доказана.

Лемма 2. При любых натуральных k и n верна формула:

Доказательство. Воспользуемся индукцией по k. При k=1 тождество (1.6) проверяется непосредственно:

.

Предполагая его справедливость при k-1 (k?2), получим

Лемма доказана.

Определение 5. Если измеримая периода (b-a) функция f(x)?Lq (Lq-класс всех вещественных измеримых на [a,b] функции f(x)), то под её интегральным модулем гладкости порядка k?1 понимают функцию

Лемма 3. Если то справедливо

Доказательство. В самом деле,

и так далее. Лемма доказана.

Определение 6. Если функция f(x) ограничена на [a,b], то под её модулем гладкости порядка k?1 понимают функцию

заданную для неотрицательных значений и в случае, когда k=1, представляющую собой модуль непрерывности.

Свойства модулей гладкости:

1)

2) есть функция, монотонно возрастающая;

3) есть функция непрерывная;

4) При любом натуральном n имеет место ( точное) неравенство

а при любом -неравенство

5) Если функция f(x) имеет всюду на [a,b] непрерывные производные до (r-1)-го порядка, и при этом (r-1)-я производная , то

Доказательство. 1) Свойство 1) немедленно вытекает из того, что

2) Свойство 2) доказывается точно так же, как и для случая обычного модуля непрерывности.

RSSСтраница 1 из 4 [Всего 4 записей]1 2 3 4 »


При любом использовании материалов сайта обязательна гиперссылка на сайт «Репетитор».
Разработка и Дизайн компании Awelan
www.megastock.ru
Проверить аттестат