Исследование зависимости производства ликеро-водочных изделий с экономическими показателями

Рефераты, курсовые, дипломные, контрольные (предпросмотр)

Тип: Курсовая работа. Файл: Word (.doc) в архиве zip. Категория: Маркетинг, реклама
Адрес этого реферата http://referat-kursovaya.repetitor.info/?essayId=24173 или
Загрузить
В режиме предпросмотра не отображаются таблицы, графики и иллюстрации. Для получения полной версии нажмите кнопку «Загрузить». Рефераты, контрольные, дипломные, курсовые работы предоставляются в ознакомительных целях, не для плагиата.
Страница 1 из 2 [Всего 2 записей]1 2 »

Постановка задачи.

Определить существует ли зависимость между производством ликеро-водочных изделей (Y) и :

1- валовый сбор зерна (X1);

2 - валовый сбор сахарной свеклы (X2);

3- потребление пива (X3);

4- население России (X4);

5- потребление водки (X5).

В случае обнаружения зависимости построить оптимальную модель, котороя могла бы быть пригодной для прогноза.

Первичный анализ исходных данных.

Анализ динамики производства ликеро-водочных изделий (Y) показывает, что за период наблюдения (N=21) минимальное производство был равно 138.1, а максимальным 209.2, тем самым изменение величины Y было в пределах 71.1. Вариация равная 12.2126% свидетельствует об однородности величины Y (33%). Отклонение от среднего значения (176.5905) в среднем не превышало 17.5814 (среднее абсолютное отклонение), эксцесс (-1.1554) и асимметрия (-0.1873) утверждает, что распределение величины Y имеет незначительный сдвиг влево и достаточно выраженную плосковершинность.

Величина Y имеет тенденцию к увеличению, средний темп прироста составляет -0.981% .

Анализ динамики валового сбора зерна (X1) показывает, что за период наблюдения (N=21) минимальный сбор был равен 248.1, а максимальным 356.3, тем самым изменение величины X1 было в пределах 108.2. Вариация равная 10.6046% свидетельствует об однородности величины X1 (33%). Отклонение от среднего значения (313.5953) в среднем не превышало 33.2555 (среднее абсолютное отклонение), эксцесс (-0.9713) и асимметрия (-0.5517) утверждает, что распределение величины X1 имеет незначительный сдвиг влево и достаточно выраженную плосковершинность.

Величина X1 имеет тенденцию к увеличению, т.к. средний темп прироста составляет 1.0741% или на 0.0254 единиц измерения (% от номинала в миллионах тонн). Сбор до 16 наблюдения имеет тенденцию к увеличению, в период от 16 до 21 наблюдается падение сбора.

Анализ динамики валового сбора сахарной свеклы (X2) показывает, что за период наблюдения (N=21) минимальный сбор был равен 20812, а максимальный 33177, тем самым изменение величины X2 было в пределах 12365. Вариация равная 13.9157% свидетельствует об однородности величины X2 (33%). Отклонение от среднего значения (26846.0952) в среднем не превышало 3735.8119 (среднее абсолютное отклонение), эксцесс (-1.1144) и асимметрия (0.324) утверждает, что распределение величины X2 имеет незначительный сдвиг вправо и плосковершинность.

Величина X2 имеет тенденцию к увеличению, т.к. средний темп прироста составляет 0.9409%.

Анализ динамики потребление пива (X3) показывает, что за период наблюдения (N=21) минимальное потребление пива было 92.4, а максимальная 106.1, тем самым изменение величины X3 было в пределах 13.7. Вариация равная 3.8059% свидетельствует об однородности величины X3 (33%). Отклонение от среднего значения (99.5857) в среднем не превышало 3.7902 (среднее абсолютное отклонение), эксцесс (5.6717) и асимметрия (1.4085) утверждает, что распределение величины X3 имеет незначительный сдвиг вправо и достаточно выраженную островершинность.

Величина X3 имеет тенденцию к росту, т.к. средний темп прироста составляет 0.0821% . Потребление пива во время 9 наблюдения имеет резкое падение.

Анализ динамики населения России (X4) показывает, что за период наблюдения (N=21) минимальное население было 130.1, а максимальное 147.4, тем самым изменение величины X4 было в пределах 17.3. Вариация равная 3.6811% свидетельствует об однородности величины X4 (33%). Отклонение от среднего значения (138.7) в среднем не превышало 5.1057 (среднее абсолютное отклонение), эксцесс (-1.2575) и асимметрия (0.1499) утверждает, что распределение величины X4 имеет незначительный сдвиг вправо и незначительную плосковершинность.

Величина X4 имеет тенденцию к возрастанию, т.к. средний темп прироста составляет 0.6262% .Кривая распределения величины Х4 имеет небольшой подъем вверх.

Анализ динамики потребления водки (X5) показывает, что за период наблюдения (N=21) минимальное потребление было 133.5, а максимальное 208.5, тем самым изменение величины X5 было в пределах 75. Вариация равная 11.4207% свидетельствует о однородности величины X5 (33%). Отклонение от среднего значения (175.9905) в среднем не превышало 20.0993 (среднее абсолютное отклонение), эксцесс (-0.7625) и асимметрия (-0.1934) утверждает, что распределение величины X5 имеет незначительный сдвиг влево и достаточно выраженную плосковершинность.

Величина X5 имеет тенденцию к уменьшению, т.к. средний темп прироста составляет -1.1457% . Потребление до 13 наблюдения возрастает, затем последовал медленный спад до 21 наблюдения.

Корреляционно-регрессионный анализ.

Анализ коэффициентов парной корреляции говорит о наличии интенсивной связи Y с Х5 (0.9834), средней с Х4 (-0.5315) -знак минус указывает на обратную зависимость- и Х3 ( -0.4266), слабой с Х2 (-0.1890) и Х1 (0.1176). Значит в модель стоит включить факторы Х3, Х4,Х5.

Следующим этапом идет проверка на мультиколлениарность,существует несколько способов данной проверки.

Способ 1.

При проверке на мультиколлениарность (коэффициенты частной корреляции и t-статистика) видно, что существует взаимосвязь между:

следовательно в модель включается Х5 и Х4, т.к. коэффициент парной корреляции Y-X4 (-0.5315) больше, чем коэффициенты парной корреляции Y-X1 (0.1170) и Y-X3 (-0.4266) и Y-Х2(-0.1890).

Способ 2.

Этот метод основан на анализе распределения корреляционной матрицы. Идея метода заключается в том что вводятся некоторые критерии на основе которого можно проверить о значимости отклонения корреляционной матрицы от ортогональной, для этого вводится величина:

Х^2= N-1-1/6(2*n+5)*ln|R|

по расчетам ХИ квадрат равно 80.469 больше табличного, значит между переменными существует мультиколлениарность. Для определения степени мультиколлениарности вводим величину:

W=(Cii-1)-(N-n)/(n-1)

где Сii - диагональный элемент матрицы обратной корреляционной.

Данная таблица указывает, что наиболее коллениарна Х2, затем Х4 и можно сказать что Х3 и Х5 вовсе не коллениарны. Следовательно в модель лучше включить Х3 и Х5, но проведенный последующий регрессионный анализ указывает что лучше включать в модель Х2 и Х3, т.е. производство ликеро-водочных изделий (Y) зависит от валового сбора сахарной свеклы (X2) и потребления пива (X3).

Анализ уравнения регрессии говорит, что при росте Х5 на 1 единицу в своих единицах измерения увеличит Y на 1.0552 единицы в своих единицах измерения, Отклонения основного тренда носят случайный характер, а данная модель определяет Y на 96.71% ( R-квадрат). Относительная ошибка апроксимации указывает об адекватности математической модели. Степень рассеянности Y мала (дисперсия=3.909). Распределение Y является нормальным, в ряду нет автокорреляции нельзя , а проверка на стационарность случайного компонента с помощью Х^2 (Х^2=10.04) указывает что коэффициенты корреляции неоднородны.

метод пресс.

Основан на выборе наилучшего уравнения регрессии для этого рассчитывают значения сумм квадратов расхождения:

Последующая проверка говорит, что модель 25 наиболее выгодна. Значит

производство ликеро-водочных изделий (Y) зависит от 2- валового сбора сахарной свеклы (X2), 5- потребления водки (X5) на 97.66%.

Метод исключения.

Метод исключения основан на анализе коэффициентов регрессионного уравнения при условии, что переменная при этом коэффициенте в модель была включена последней.

Следовательно в модель включается только Х5. Данная модель определяет Y на 96.71%, значит потребление водки (X5) значительно влияет на производство ликеро-водочных изделий (Y).

Метод главных компонент.

Метод главных компонент был предложен К. Пирсоном в 1901 году, а в дальнейшем развит и доработан. Метод основан на стандартизации переменных для чего используют следующие формулы:

Zij=(Xij-Xiсред)Si ;

Si=[1/(n-1)*сумма(Xij-Xiсред)^2]^(1/2) ;

RSSСтраница 1 из 2 [Всего 2 записей]1 2 »


При любом использовании материалов сайта обязательна гиперссылка на сайт «Репетитор».
Разработка и Дизайн компании Awelan
www.megastock.ru
Проверить аттестат