Интерференция

Рефераты, курсовые, дипломные, контрольные (предпросмотр)

Тип: Лекция. Файл: Word (.doc) в архиве zip. Категория: Физика, астрономия
Адрес этого реферата http://referat-kursovaya.repetitor.info/?essayId=4807 или
Загрузить
В режиме предпросмотра не отображаются таблицы, графики и иллюстрации. Для получения полной версии нажмите кнопку «Загрузить». Рефераты, контрольные, дипломные, курсовые работы предоставляются в ознакомительных целях, не для плагиата.
Страница 1 из 2 [Всего 2 записей]1 2 »

Этим словом обозначается, в общем-то, всего лишь сложение волн. Всего лишь сложение, но при этом возникает много вопросов и сложностей. Прежде всего дело в том, что волна является весьма непростым объектом, объектом более сложным, чем нам это представляется на данном этапе.

Кроме того многообразными и не очень простыми оказываются схемы наблюдения разных явлений, возникающих в результате сложения волн, их интерференции. Так что лучше всего заранее настроится на обсуждение многочисленных и достаточно непростых вопросов.

Двухлучевая интерференция. Точечные источники

Собственно, эту задачу мы уже решали - при падении на экран двух волн от разнесенных на расстояние d точечных источников должны наблюдаться минимумы и максимумы интенсивности. Если расстояние до экрана ld, то, как мы выяснили ранее, расстояние между минимумами оказывается равным

Обычно расстояние между источниками составляет несколько длин волн, и расстояние между минимумами x оказывается не слишком ма-леньким.

Мы кроме того считаем, что координата точки наблюдения xl, и это обстоятельство позволяет ввести понятие углового расстояния между источниками d/l. Тогда выражение для ширины интерферен-ционного максимума может быть записано в виде:

Получим это выражение еще одним способом. На достаточно большом расстоянии от источников приходящие от них волны можно считать плоскими, и вблизи нуля на оси OX углы падения этих волн будут равны и. Далее, при падении плоской волны на экран, как мы в свое время выяснили, фаза электромагнитных колебаний будет зависеть от координаты:

Проинтегрировав эти уравнения, мы получим такие выражения для зависимости фаз колебаний от координаты:

Мы посчитали фазы равными нулю при x=0. В этой точке будет наблюдаться максимум колебаний. Ближайший к нему минимум будет наблюдаться на расстоянии полуширины линии x/2, которое определяется условием

Мы рассматривали, как это обычно и делается, интерференцию волн от точечных источников, от которых, стало быть, исходят сферические волны. При удалении от точки наблюдения в перпендикулярном к плоскости рисунка направлении (вдоль оси OY) будет уменьшаться угловое расстояние между источниками , и полосы будут наблюдаться в виде расходящихся дуг.

На практике, однако, вместо точечных источников используются параллельные оси OY щели, которые освещаются некоторыми источниками света. В пределах щели происходят электромагнитные колебания и они действуют как множество непрерывно расположенных точечных источников. В этом случае интерферируют цилиндрические волны и интерференционные полосы параллельны друг другу.

Опыт Юнга. Когерентность волн

При наблюдении интерференционной картины возникают некоторые не вполне очевидные трудности. Представим себе, что в качестве источников цилиндрических волн мы попытались использовать нити двух электрических лампочек. Излучение раскаленных нитей осущест-вляется ускоренным движением электронов в нитях, никак друг с другом не связанных. Такие волны, естественно, не будут иметь одинаковые начальные фазы, которые при записи соответствующих вы-ражений мы просто считали нулевыми. И эти начальные фазы не только различны у рассматриваемых двух волн, но и непостоянны во вре-мени, изменяются случайным образом. Такие волны называют некогерентными.

В принципе нам не обязательно нужно, чтобы начальные фазы колебаний от двух источников были равны. Нам надо, чтобы постоян-ной во времени была разность фаз этих колебаний. Если это требование выполняется, то волны (или источники) называют когерентными. Это определение когерентности волн (источников волн).

Таким образом, возникает проблема: как добиться того, чтобы источники были когерентными?

Представим себе, что источником (приблизительно) цилиндрических волн является вертикально расположенная раскаленная полоска металла. Понятно, что она будет излучать свет по разным направлениям как в вертикальной, так и в горизонтальной плоскостях.

Мы связали направление излучения с производной фазы колеба-ний по координате. Из огромного числа колеблющихся электронов найдутся и такие, которые в данный момент колеблются с (примерно) одинаковой фазой. Их излучение будет направлено по нормали к полоске. Но найдутся и электроны, которые колеблются так, что для них производная фазы по направлению вдоль некоторой прямой, "на-рисовано" на поверхности полоски, имеет отличное от нуля значение. Их излучение будет направлено под некоторым углом к излучаю-щей поверхности.

Но пусть какая-то группа электронов излучает волну примерно по нормали и она попадает затем на экран. Однако, в следующий промежуток времени это будут уже другие электроны, начальная фаза падающей на экран волны будет другой. Но, разумеется, в течение некоторого времени она все же будет иметь какое-то значение, будет (примерно) постоянной. Такое постоянство фазы определяет временную (с ударением на 'у') когерентность.

При этом волна не будет направлена строго по одному направлению, она обязательно будет распространяться в некотором телесном угле. Значит в точках на некоторых расстояниях в поперечном направлении фаза колебаний будет одинаковой. И чем дальше от источника, тем эти расстояния, естественно, будут больше. В таком случае говорят о пространственной когерентности.

Поэтому можно, например, осветить пару щелей достаточно удаленным источником электромагнитных колебаний. Например, весьма велика пространственная когерентность у света, который приходит от звезд. Вот только сила света при этом оказывается очень малой.

Проще (при меньшем удалении от источников и с большей силой света) осветить когерентным светом одну узкую щель. Выделив на ней поперечную полоску, мы можем надеяться, что в ее пределах колебания будут когерентными. Такая полоска может рассматриваться как система непрерывно расположенных точечных источников, зависи-мость амплитуды волны от угла мы с Вами ранее посчитали:

Чем уже щель, тем больше угол, в пределах которого происходит излучения. И в пределах этого угла излучение будет когерентным.

Эта идея реализована в классическом опыте Юнга. На экране наблюдается интерференция когерентных волн от двух щелей, которые, в свою очередь, освещаются цилиндрической волной от одиночной щели.

Длина когерентности

В опыте Юнга обеспечивается когерентность (постоянство разности фаз колебаний) двух источников света - параллельных щелей. Естественно, при некогерентных источниках интерференционная картина наблюдаться не может. Но для успешности наблюдения интерференционной картины оказывается важной и временная когерентность. При этом оказывается более удобным говорить о длине когерентности. Она определяется как характерное время, в течение которого фаза колебаний волны остается постоянной, умноженное на скорость света в вакууме.

Действительно, при удалении от центра экрана увеличивается разность хода лучей от источников S' и S". И если разность хода больше длины когерентности, то мы опять-таки не сможем наблюдать интерференционую картину.

Сделаем такое (достаточно очевидное) утверждение: "чисто" синусоидальных волн в природе не бывает. Ближе всего к такой волне излучение лазера, но и для него длина когерентности конечна, хотя и весьма велика. Но любая реальная волна представляет собой сумму больше или меньше отличающихся по частоте синусоидальных волн.

Интенсивность излучения, таким образом, некоторым образом распределена по оси частот (или длин волн). В этой связи говорят о ширине спектральной полосы, и в вопросе о том, как связана длина когерентности с разностью длин волн нам вновь поможет рассмотрение биений.

Предположим, что волна света при наблюдении интерференции в опыте Юнга представляет собой сумму двух синусоидальных волн. Как мы знаем, амплитуда суммарных колебаний изменяется по закону

Следовательно, изменение фазы происходит через время t, которое определяется условием

и длина когерентности

С другой стороны мы имеем:

По смыслу длина когерентности - величина положительная. Беря поэтому соответствующие величины по модулю, имеем:

RSSСтраница 1 из 2 [Всего 2 записей]1 2 »


При любом использовании материалов сайта обязательна гиперссылка на сайт «Репетитор».
Разработка и Дизайн компании Awelan
www.megastock.ru
Проверить аттестат