Изучение динамических процессов, происходящих в автоматических системах

Рефераты, курсовые, дипломные, контрольные (предпросмотр)

Тип: Курсовая работа. Файл: Word (.doc) в архиве zip. Категория: Математика
Адрес этого реферата http://referat-kursovaya.repetitor.info/?essayId=20128 или
Загрузить
В режиме предпросмотра не отображаются таблицы, графики и иллюстрации. Для получения полной версии нажмите кнопку «Загрузить». Рефераты, контрольные, дипломные, курсовые работы предоставляются в ознакомительных целях, не для плагиата.
Страница 1 из 3 [Всего 3 записей]1 2 3 »

Введение

Одной из основных задач теории автоматического регулирования является изучение динамических процессов, происходящих в автоматических системах. Автоматические системы при нормальной эксплуатации должны поддерживать определенный режим работы объекта регулирования при действии на него многих возмущающих факторов. Такое поведение может быть достигнуто лишь в системах автоматического регулирования, обладающих устойчивостью по отношению к этим воздействиям. Устойчивость системы означает, что малое изменение входного сигнала или какого-нибудь возмущения, начальных условий или параметров не приведут к значительным отконениям выходного сигнала. Это определение раскрывает физический смысл понятия устойчивости.

Теория устойчивости, основоположниками которой являются великий русский ученый А.М. Ляпунов и великий французский ученый А.Пуанкаре, представляет собой важный раздел прикладной математики. Создателями современной теории устойчивости являются русские ученые Н.Г. Четаев, Е.А. Барбашин, Н.П. Еругин, Н.Н. Красовский.

Понятие устойчивости, асимптотической устойчивости и неустойчивости по Ляпунову.

Рассмотрим задачу Коши для нормальной системы дифференциальных уравнений

x' = f ( t , x )

с начальными условиями x ( t0 ) = x0 (2)

где x = ( x1, x2, ... , xn ) - n - мерный вектор; t - I = [t0, + - [ - независимая переменная, по которой производится дифференцирование;

f ( t, x ) = ( f1 ( t , x ) , f2 ( t , x ) , ... , fn ( t , x ) ) - n - мерная вектор - функция.

Комментарии к задаче Коши (1), (2). Для простоты восприятия эту задачу можно сначала трактовать как задачу Коши для скалярного дифференциального уравнения первого порядка вида x'= f ( t , x ) с начальным условием x ( t0 ) = x0. С целью упрощения все рисунки п. 10 ,если нет специальных оговорок, приводится для случая n = 1.

Так как задача теории устойчивости впервые возникла в механике, то переменную t принято интерпретировать как время, а искомую вектор-функцию x ( t ) - как движение точки в зависимости от времени в пространстве Rn+1 (рис.1)

Пусть задача Коши (1), (2) удовлетворяет условиям теоремы существования и единственности. Тогда через каждую точку ( t0 , x0 ) области единственности решений проходит только одна интегральная кривая. Если начальные данные ( t0 , x0 ) изменяются, то изменяется и решение. Тот факт, что решение зависит от начальных данных, обозначается следующим образом: x ( t ) = x ( t ; t0 , x0 ). Изменение этого решения в данной математической модели с изменением начальных данных ( t0 , x0 ) приводят к существенному изменению решения x ( t ; t0 , x0 ) , приводит к тому, что такой моделью нельзя пользоваться, поскольку начальные данные ( t0 , x0 ) получаются из опыта, а изменения не могут быть абсолютно точными. Естественно, что в качестве математической модели пригодна лишь та задача Коши, которая устойчива к малым изменениям начальных данных.

Определим понятие устойчивости, асимптотической устойчивости и неустойчивости в смысле Ляпунова. Для этого отклоение решения x ( t ) = x ( t ; t0 , x0 ) , вызванное отклонением - x0 начального значения x0 , будем записывать следующим образом:

| x ( t ; t0 , x0 + - x0 ) - x ( t ) | = | x ( t ; t0 , x0 + - x0 ) - x ( t ; t0 , x0 ) |.

Определение 1. Решение x ( t ) = x ( t ; t0 , x0 ) системы (1) называется устойчивым по Ляпунову в положительном направлении (или устойчивым), если оно непрерывно по x0 на интервале I = = [ t0, + - [ , т.е. - - 0 - - 0 такое, что - - x0

| - x0 | - - == | x ( t ; t0 , x0 + - x0 ) - x ( t ) | - - - t - t0.

Если, кроме того, отклонение решения x ( t ) стремится к нулю при t - + - для достаточно малых - x0 , т.е. - - 0 - - x0.

| - x0 | - - == | x ( t ; t0 , x0 + - x0 ) - x ( t ) | - 0 , t - + - . (3)

то решение x ( t ) системы (1) называется асимптотически устойчивым в положительном направлении (или асимптотически устойчивым).

Аналогично определяются различные типы устойчивости решения в отрицательном направлении.

Комментарий к определению 1. 1) Геометрически устойчивость по Ляпунову решение х ( t ) можно интерпритировать следующим образом ( рис.1 ) : все решения x ( t ; t0 , x0 + - x0 ) , близкие в начальный момент t0 к решению x ( t ) (т.е. начинающиеся в пределах - - трубки ) , не выходят за пределы - - трубки при всех значениях t - t0

2) Асимптотическая устойчивость есть устойчивость с дополнительным условием (3) : любое решение x1 ( t ) , начинающееся в момент t0 в - - трубке, с течением времени неограниченно приближается к решению x ( t ) (рис.2). Трубка радиуса - называется областью притяжения решения x ( t ). Решение x2 ( t ), начинающееся при t = t0 за пределами области притяжения, но в пределах - - трубки, не покидает - - трубку, хотя может и не приближаться к решению x(t).

Определение 2. Решение x ( t ) = x ( t ; t0 , x0 ) системы (1) называется неустойчивып по Ляпунову в положительном направлении (или неустойчивым), если оно не является устойчивым в положительном направлении.

Аналогично определяется неустойчивость в отрицательном направлении.

Комментарий к определению 2. Геометрически неустойчивость по Ляпунову означает, что среди решений, близких в начальный момент t0 к решению х ( t ) , найдется хотя бы одно, которое в некоторый момент t1 ( свой для каждого такого решения) выйдет за пределы - - трубки (рис.3).

Приведем примеры из механики, иллюстрирующие определения различных типов устойчивости для одномерного случая, т.е. n = 1.

Рассмотрим маятник, состоящий из точечной массы m, укрепленной на невесомом стержне длиной l (рис.4). Выведем маятник из состояния I, отклонив стержень на угол - ; тогда, как известно из опыта, он будет стремиться занять вновь положение I. Если пренебречь сопротивлением окружающей среды, то маятник будет колебаться возле положения I сколь угодно долго с амплитудой, равной начальному отклонению, - это модель устойчивого положения равновесия. Если же учитывать сопротивление окружающей среды, то амплитуда колебаний маятника будет уменьшаться и в итоге он снова займет положение I - это модель асимптотически устойчивого положения равновесия. Если маятник находится в положении II, то малейшее его смещение приведет к удалению маятника от состояния II - это модель не устойчивого положения равновесия.

Исследование устойчивости произвольного решения x ( t ) системы (1) всегда можно свести к исследованию устойчивости нулевого решения некоторой преобразованной системы. Действительно, в системе (1) произведем подстановку y ( t ) = x - x (t). Тогда получим систему

y' = F ( t, y ). (4)

где F ( t , y ) = f ( t , y ( t ) + x ( t ) ) - f ( t , x ( t ) ) , F (t, 0) - 0 - t - t0.

Решению x ( t ) системы (1) соответствует нулевое решение y (t) - 0 системы (4).

В дальнейшем будем предполагать, что система (1) имеет нулевое решение, т.е. f ( t , 0 ) = 0 - t - t0, и ограгничимся исследованием устойчивости нулевого решения. Переформулируем определения различных типов устойчивости для нулевого решения x ( t ) - 0 системы (1).

Определение 3. Нулевое решение x ( t ) - 0 системы (1) называется устойчивым по Ляпунову в положительном направлении (или устойчивым), если - - 0 - - = - ( - ) 0 такое, что - x0

| - x0 | - - == | x ( t ; t0 , x0 ) | - - - t - t0.

Если кроме того,

? - 0 - x0 | - x0 | - - == | x ( t ; t0 , x0 ) | - 0 , t - + - ,

RSSСтраница 1 из 3 [Всего 3 записей]1 2 3 »


При любом использовании материалов сайта обязательна гиперссылка на сайт «Репетитор».
Разработка и Дизайн компании Awelan
www.megastock.ru
Проверить аттестат