Задача равновесия

Рефераты, курсовые, дипломные, контрольные (предпросмотр)

Тип: Лекция. Файл: Word (.doc) в архиве zip. Категория: Экономическая теория, Математика
Адрес этого реферата http://referat-kursovaya.repetitor.info/?essayId=4295 или
Загрузить
В режиме предпросмотра не отображаются таблицы, графики и иллюстрации. Для получения полной версии нажмите кнопку «Загрузить». Рефераты, контрольные, дипломные, курсовые работы предоставляются в ознакомительных целях, не для плагиата.
Страница 1 из 3 [Всего 3 записей]1 2 3 »

ЗАДАЧА ЗАТРАТ

1.Классификация задач. Начнем изучение задачи равновесия с простых экономи-ческих примеров.

Рассматривая массовое производство каких-нибудь обычных изделий, например - строительство жилых домов (производство автомобилей, компьютеров и т.п.),- мы увидим: всякое такое дело оказывается состоящим из двух взаимосвязанных производств: производства строительных материалов (автомобильных агрегатов, микросхем и проч.) и собственно строительства (сборочного производства). При этом, производство строительных материалов представляет собою процесс разложения сложного природного сырья в ряд простых изделий, например: круглого леса в доски стандартных размеров,- и наоборот: строительное производство есть процесс сборки из простых строительных материалов различных сложных построек. Для нас здесь важно то, что в развитом народном хозяйстве оба эти производства - и произвольный лесопильный завод, и какая-нибудь строительная артель - действуют на различных рынках: в нашем случае - на рынке пиломатериалов и на рынке строительных услуг,- и являются, вообще говоря, независимыми друг от друга. В терминах народохозяйственной модели "затраты-выпуск" Леонтьева (см.1.5.1) задача разложения сырья является задачей затрат, а задача сборки изделий - задачей выпуска.

Кроме того: всякий управляющий промышленным производством, независимо от того, действует ли он в перерабатывающей или сборочной областях промышленности, участвует во внешней рыночной деятельности двояким образом: и как потребитель, покупающий сырье для своего производства, и как производитель, продающий произведенные им изделия. Покупка сырья составляет его расход, а продажа изделий - доход. По этой причине, задача разумного управления промышленным предприятием оказывается для него состоящей из двух задач: задачи минимизации расходов и, одно-временно, - задачи максимизации доходов того же самого промышленного производства. Такая пара задач называется взаимно двойственной.

В итоге, множество задач научного производственного управления образуется из задач четырех видов: из задачи разложения сырья и задачи сборки изделий, каждая из которых, в свою очередь, распадается в пару прямой и ей двойственной подзадач:

прямая подзадача;

Задача затрат:

двойственная подзадача.

прямая и

Задача выпуска:

двойственная подзадачи.

Их точной модельной постановке и посвящена первая глава наших лекций.

2.Векторные обозначения. И промышленное сырье, и изделия из него являются товарами, и как всякие товары описываются парой взаимосвязанных величин: количеством q (от quantity) и ценой p (от price). Поэтому описание производства как преобразования сырья в изделия имеет дело с двумя их связанными парами: количествами и ценами сырья, и количествами и ценами изделий. Для удобства различения этих величин те из них, которые относятся к сырьевым или первичным товарам, мы будем снабжать первым значком "1", а относящиеся к производимым или вторичным товарам - значком "2", например: q 1 и p1, q 2 и p2 .

При использовании m видов сырья для производства n видов изделий: m, n = 1, 2, , как их количества, так и цены становятся многокомпонентными или векторными ве-личинами. В матричном исчислении их представляют одностолбцовыми или одно-строчными матрицами, различение которых связано с несимметричностью закона мат-ричного умножения по правилу "строка на столбец". Нам будет удобно первые значки количественным векторам приписывать сверху и их составляющие q 11 , , q 1m и q 21 , , q 2n в матричном представлении записывать в виде одностолбцовых m 1 и n 1 матриц соответственно:

а те же первые значки ценовым векторам мы будем приписывать снизу: p1 и p2 , и их со-ставляющие p1 1 , , p1 m и p2 1 , , p2 n записывать в виде однострочных 1 т и 1 n матриц:

Имеющие одни и те же пространственные размерности количественный и ценовый векторы одного и того же наборов товаров мы будем называть взаимно-двойственными векторами. Они обладают тем свойством, что их матричное произведение по правилу "строка на столбец", например:

дает одноклеточную 1 1 матрицу или "скаляр" (число) p1 , q 1 - сумму покомпо-нентных произведений перемножаемых векторов, называемую их скалярным произведением или, коротко, сверткой этих векторов.

На протяжении всех наших лекций сторочные латинские буквы с двумя значками будут обозначать одномерные величины или числа, те же буквы с одним значком - со-ответствующие векторы, а буквы без значков - матрицы или операторы. Причем всегда нижний значок матричных составляющих будет нумеровать строки, а верхний - столбцы.

3.Табличное представление. Задача затрат представляет собою задачу переработки m взаимозаменяемых видов "сложного" сырья в n видов "простых" изделий. В линейном случае ее технология задается n m таблицей неотрицательных чисел a1 1, , an m :

al k [количество l-изделий / на единицу k-сырья] 0 ;

составляющих матрицу выпуска a. В целом, вместе с двумя парами векторов q 1 и p1 , и q 2 и p2 всех своих товаров, задача затрат описывается m n+2(m+n) величинами и естественно представляется в следующем табличном виде:

Всякое производство, будь то разложение сырья или сборка изделий, является преобразованием сырья в изделия как в отношении их количеств, так и цен:

- и поэтому из 2m+2n его количественных и ценовых величин одна их половина предоп-ределяет другую. Так, в задаче затрат нам задается рыночный спрос на выпускаемые изделия (план их производства) в виде неотрицательного вектора спроса изделий q2 с n составляю-щими:

q 2l [количество. l-изделий] 0; l = 1, , n,

а дополнительный ему вектор q 1 спроса на потребляемое сырье подлежит определению в условиях заданных цен - неотрицательного вектора закупочных цен сырья p1 с m со-ставляющими

p1 k [рубли / за единицу k-сырья] 0; k = 1, , m.

Заданные постоянные задачи называются, также, ее параметрами, а искомые не-известные - переменными. Для отличения параметров задачи от ее переменных мы будем снабжать параметры дополнительным значком - ноликом " " сверху.

4.Количественная часть задачи затрат. Предложение изделий. В прямой части за-дачи затрат относительно заданных цен p1 на потребляемое сырье ищется наименее расходное значение его вектора спроса q 1 . По этой причине прямая часть задачи про-изводственного управления называется, также, ее количественной частью.

Выпуская al k единиц l-изделий из каждой затрачиваемой единицы k-сырья, из q 11 , , q 1m единиц сырья всех m видов изготовляют q 21 , , q 2n :

единиц изделий каждого вида. Количества предлагаемых изделий каждого вида пред-ставляются линейными функциями

количеств затрачиваемого сырья в виде скалярных произведений a l , q 1 m-мерного столбцового вектора q 1 затрат сырья с m-мерными строчными векторами a1 , , a n матрицы затрат a:

- векторами выпуска изделий каждого вида из всего ассортимента потребляемого сырья.

В обычных матричных обозначениях набор линейных функций q 2l = q 2l (q 1) образует n-мерный столбцовый вектор предложения изделий q 2. Матричное представление полученных балансовых соотношений:

описывает осуществляемый m n матрицей выпуска a линейное преобразование m ко-личеств потребляемого сырья всех видов в n количества производимых из него изделий.

5.Множество допустимых планов. Допустимыми являются такие закупки сырья q 1, при которых предложение производимых из него изделий q 2 удовлетворяет заданному на них спросу q 2:

или: предложение удовлетворяет спрос.

Полученные ограничения:

являются прямыми или количественными необходимыми условиями равновесия. Их решения называются множеством допустимых планов задачи.

Как мы увидим позднее (см. ), множество решений полученной системы нера-венств, вообще говоря, неоднозначно, допуская любое неотрицательное перепроизводство изделий q 2 :

6.Равновесное потребление сырья. Издержки данного производства, то есть стоимость приобретаемых по заданным закупочным ценам p1 1 , , p1m потребных количеств q 11 , , q 1m всех видов сырья, образует их линейную функцию L(q 1):

RSSСтраница 1 из 3 [Всего 3 записей]1 2 3 »


Найти репетитора

При любом использовании материалов сайта обязательна гиперссылка на сайт «Репетитор».
Разработка и Дизайн компании Awelan
www.megastock.ru
Проверить аттестат