Дифференциальные уравнения

Рефераты, курсовые, дипломные, контрольные (предпросмотр)

Тип: Реферат. Файл: Word (.doc) в архиве zip. Категория: Математика
Адрес этого реферата http://referat-kursovaya.repetitor.info/?essayId=5357 или
Загрузить
В режиме предпросмотра не отображаются таблицы, графики и иллюстрации. Для получения полной версии нажмите кнопку «Загрузить». Рефераты, контрольные, дипломные, курсовые работы предоставляются в ознакомительных целях, не для плагиата.
Страница 1 из 8 [Всего 8 записей]1 2 3 4 5 » ... Последняя »

Определение.

Дифференциальным уравнением называется уравнение, содержащее производные неизвестной функции. Если неизвестная функция зависит от одной переменной, то это обыкновенное дифференциальное уравнение, иначе - уравнение в частных производных.

Определение.

Наивысший порядок производных неизвестной функции, входящих в уравнение, называется порядком уравнения.

Определение.

Дифференциальное уравнение называется линейным, если производные и сама неизвестная функция входят в уравнение линейным образом.

Пусть выбран любой , где , и его норма:

- дифференциальный оператор.

- запись линейного диф. уравнения с помощью диф. оператора.

Определение.

Открытое, связное множество называется областью.

По умолчанию будем считать область ограниченной.

Через или будем обозначать границу области.

Определение.

- (n-1)-мерное многообразие S в принадлежит классу ( ), если

для и такие, что:

, где

однозначно проектируется на плоскость , при этом:

D - проекция данного множества на плоскость , - k раз непрерывно дифференцируема в D по всем переменным.

Можно разбить поверхность на части, в каждой части можно одну координату выразить через другие непрерывно дифференцируемой функцией.

- множество k раз непрерывно дифференцируемых функций в Q.

- множество k раз непрерывно дифференцируемых функций в .

, аналогично .

- множество финитных k раз непрерывно дифференцируемых функций.

Аналогично: .

Классификация линейных уравнений в частных производных второго порядка.

.

- матрица квадратичной формы.

- n вещественных собственных значений матрицы A

- количество положительных собственных значений.

- количество отрицательных собственных значений.

- количество нулевых собственных значений с учетом кратности.

1.Если = n или = n, то это эллиптическое уравнение.

Ex: Уравнение Пуассона

.

2.Если = n - 1, = 1, или = 1, = n - 1, то уравнение гиперболическое.

Ex: - волновое уравнение.

Для уравнения Лапласа:

Для волнового уравнения:

3.Если , а , то ультрагиперболическое уравнение.

Ex: .

4.Если , то параболическое уравнение.

Ex: , и - уравнение теплопроводности.

Определение.

Каноническим видом линейного дифференциального уравнения в частных производных называется такой вид, когда матрица A является диагональной.

Приведение к каноническому виду.

1) y=y(x), то:

Уравнение (1) в новой системе координат:

(1')

Матрица Якоби:

.

В результате:

гиперболическое уравнение.

- канонический вид волнового уравнения.

Замечание: тип уравнения может быть различный в различных точках.

Постановка начальных и краевых задач для уравнений в частных производных.

Задача Коши для волнового уравнения:

Уравнение теплопроводности

Уравнение Пуассона

Определение.

Если малые изменения правой части уравнения приводят к большим изменениям в решении, то задача считается некорректной.

(6)

(7.1)

(7.2)

(7.3)

(6)(7.1) - первая краевая задача, задача Дирихле.

(6)(7.2) - вторая краевая задача, задача Неймана.

(6)(7.3) - третья краевая задача.

Волновое уравнение.

(8)

(9)

(10)

(11.1)

(11.2)

(11.3)

(8) (9) (10) (11.1) - смешанные

(11.2) задачи

(11.3) (краевые задачи)

- единичный вектор внешней нормали к поверхности.

На задаются начальные условия.

На боковой поверхности - краевые задачи.

Параболическое уравнение.

(12)

(13)

(14.1)

(14.2)

(14.3)

(12) (13) (14.1) - первая, вторая и третья смешанные задачи

(14.2) для уравнения

(14.3) теплопроводности.

(14.1) - на границе задана температура;

(14.2) - задан тепловой поток;

(14.3) - задан теплообмен с окружающей средой.

Решение смешанных задач для волнового уравнения методом Фурье (разделением переменных).

Первая смешанная задача.

(1)

(2)

(3)

(4)

(5)

(6)

Собственные значения (5) - (6) вещественны, имеют конечную кратность.

- изолир. .

- ортонормированный базис в .

В симметричной матрице собственные вектора, соответствующие разным собственным значениям, попарно ортогональны.

Пусть функции - разложены по базису

тогда и u(t,x) можно разложить по базису :

Почленно дифференцируем ряд 2 раза:

(7)

Путём разложения решения в ряды по собственным функциям задачи алгебраизуем задачу, получаем счётное число обыкновенных дифференциальных уравнений.

(8)

(9)

(7) (8) (9) - задача.

Решим однородное уравнение для (7):

- общее решение однородного уравнения (7)

(10)

В результате: - частное решение неоднородного уравнения (7).

- общее решение уравнения (7).

Подставим (8) и (9) в решение:

т.е. .

Замечание: не обоснована сходимость рядов.

Решение смешанных задач уравнения теплопроводности методом Фурье (разделения переменных).

(1)

(2)

(3)

(4)

(5)

- собственные векторы и собственные значения.

(6)

- общее решение однородного уравнения (6)

- частное решение неоднородного уравнения (6)

- общее решение уравнения (6).

Рассмотрим функцию:

- бесконечно дифференцируема при .

Если из , то:

, и при функция склеивается как бесконечно гладкая.

-финитная :

- замыкание множества, где отлична от 0.

.

Введём - функция n переменных.

Свойства :

1) - бесконечно дифференцируемая, финитная:

.

2) - замкнутый шар радиуса h с центром в O.

.

3)

Доказательство.

, С находится из условия .

4) .

Обозначим:

Интеграл по x бесконечно дифференцируем.

Если , то:

Носитель функции принадлежит области интегрирования, и: .

Если , то : .

Свойства функции :

- срезающая функция.

Пространство .

Определение.

Пусть . Назовём множество функций , пространством , если:

- - измеримы в Q;

- в смысле Лебега.

Вводится . Выполняются все аксиомы скалярного произведения.

Утверждение (без доказательства).

- полное пространство.

Вводится .

Свойства пространства .

Теорема 1.

Множество финитных бесконечно дифференцируемых функций всюду плотно в пространстве :

.

Доказательство.

Множество ступенчатых функций плотно в .

Множество линейных комбинаций характеристических функций всюду плотно в .

Доказать: любую характеристическую функцию измеримого множества можно сколь угодно точно аппроксимировать финитными функциями.

Любое измеримое множество сколь угодно точно может быть аппроксимировано открытыми областями.

Доказать: характеристическую функцию можно сколь угодно точно аппроксимировать финитными бесконечно гладкими функциями.

Рассмотрим - финитная, бесконечно дифференцируема в .

Значит, .

Аппроксимация получена.

Теорема 2.

Множество непрерывных функций всюду плотно в пространстве .

Определение 2.

Пусть и считается продолженной нулем вне Q . Скажем:

f - непрерывна в среднеквадратичном, если :

Теорема 3.

Любая функция из непрерывна в среднеквадратичном.

Доказательство.

Пусть . Пусть

Оценим:

При сдвиге supp сдвигается в пределах шара радиуса 2a.

Теорема доказана.

Определение 3.

- бесконечно дифференцируема, финитна.

Свойства:

- осреднение функции f.

Теорема 4.

Любая функция из сколь угодно точно аппроксимируема своими осреднениями - бесконечно дифференцируемыми, финитными в .

Доказательство.

От Q к , от к

При .

Возьмем любые две функции:

Определение.

- множество функций, принадлежащих на любом компакте внутри области.

Определение 1.

Пусть

- обобщённая производная функции f, если выполняется:

(1)

Теорема 1.

RSSСтраница 1 из 8 [Всего 8 записей]1 2 3 4 5 » ... Последняя »


Найти репетитора

При любом использовании материалов сайта обязательна гиперссылка на сайт «Репетитор».
Разработка и Дизайн компании Awelan
www.megastock.ru
Проверить аттестат