Динамическое представление сигналов

Рефераты, курсовые, дипломные, контрольные (предпросмотр)

Тип: Реферат. Файл: Word (.doc) в архиве zip. Категория: Технологии, Физика, астрономия
Адрес этого реферата http://referat-kursovaya.repetitor.info/?essayId=4761 или
Загрузить
В режиме предпросмотра не отображаются таблицы, графики и иллюстрации. Для получения полной версии нажмите кнопку «Загрузить». Рефераты, контрольные, дипломные, курсовые работы предоставляются в ознакомительных целях, не для плагиата.
Страница 1 из 2 [Всего 2 записей]1 2 »

Многие задачи радиотехники требуют специфической формы представления сигналов. Для решения этих задач необходимо располагать не только мгновенным значением сигнала, но и знать как он ведет себя во времени, знать его поведение в "прошлом" и "будущем".

ПРИНЦИП ДИНАМИЧЕСКОГО ПРЕДСТАВЛЕНИЯ.

Данный способ получения моделей сигналов заключается в следующем:

Реальный сигнал представляется суммой некоторых элементарных сигналов, возникающих в последовательные моменты времени. Теперь, если мы устремим к нулю длительность отдельных элементарных сигналов, то в пределе получим точное представление исходного сигнала. Такой способ описания сигналов называется динамическим представлением , подчеркивая тем самым развивающийся во времени характер процесса.

На практике широкое применение нашли два способа динамического представления.

Первый способ в качестве элементарных сигналов использует ступенчатые функции, которые возникают через равные промежутки времени . Высота каждой ступеньки равна приращению сигнала на интервале времени . В результате сигнал может быть представлен как на рисунке 1.

рис. 1

При втором способе элементарными сигналами служат прямоугольные импульсы. Эти импульсы непосредственно примыкают друг к другу и образуют последовательность, вписанную в кривую или описанную вокруг нее . В этом случае исходный сигнал имеет вид как на рисунке 2.

рис. 2

Теперь рассмотрим свойства элементарных сигналов. Для начала : используемого для динамического представления по первому способу.

ФУНКЦИЯ ВКЛЮЧЕНИЯ.

Допустим имеется сигнал, математическая модель которого выражается системой :

(1)

Такая функция описывает процесс перехода некоторого физического объекта из "нулевого" в "единичное" состояние.

Переход совершается по линейному закону за время 2 . Теперь если параметр устремить к нулю, то в пределе переход из одного состояния в другое будет происходить мгновенно. Такая математическая модель предельного сигнала получила название функции включения или функции Хевисайда :

(2)

В общем случае функция включения может быть смещена относительно начала отсчета времени на величину t0. Запись смещенной функции такова :

(3)

ДИНАМИЧЕСКОЕ ПРЕДСТАВЛЕНИЕ ПРОИЗВОЛЬНОГО СИГНАЛА ПОСРЕДСТВОМ ФУНКЦИЙ ВКЛЮЧЕНИЯ.

Рассмотрим некоторый сигнал S(t), причем для определенности скажем, что S(t)=0 при t0. Пусть { ,2 ,3 ,...} - последовательность моментов времени и {S1,S2,S3,...} - отвечающая им последовательность значений сигнала. Если начальное значение сигнала есть S0=S(0), то текущее значение сигнала при любом t можно приближенно представить в виде суммы ступенчатых функций :

" Если теперь шаг устремить к нулю. то дискретную переменную k можно заменить непрерывной переменной . При этом малые приращения значения сигнала превращаются в дифференциалы ds=(ds/d )d , и мы получаем формулу динамического представления произвольного сигнала посредством функций Хевисайда

(4)

Переходя ко второму способу динамического представления сигнала , когда элементами разложения служат короткие импульсы, следует ввести новое важное понятие - понятие дельта-функции.

ДЕЛЬТА - ФУНКЦИЯ .

Рассмотрим импульсный сигнал прямоугольной формы, заданный следующим образом :

(5)

При любом выборе параметра площадь этого импульса

равна единице :

Например, если u - напряжение, то П = 1 В*с.

Теперь устремим величину к нулю. Импульс, сокращаясь по длительности, сохраняет свою площадь, поэтому его высота должна неограниченно возрастать. Предел последовательности таких функций при 0 носит название дельта-функции , или функции Дирака :

Дельта функция - интересный математический объект. Будучи равной нулю всюдю, кроме как в точке t = 0 дельта-функция тем не менее обладает единичным интегралом. А вот так выглядит символическое изображение дельта-функции :

ДИНАМИЧЕСКОЕ ПРЕДСТАВЛЕНИЕ СИГНАЛА ПОСРЕДСТВОМ ДЕЛЬТА-ФУНКЦИЙ.

Теперь вернемся к задаче описания аналогового сигнала суммой примыкающих друг к другу прямоугольных импульсов (рис. 2) . С помощью дельта-функции u (t) представимо в виде совокупности примыкающих импульсов. Если Sk - значение сигнала на k - ом отсчете, то элементарный импульс с номером k представляется как :

(6)

В соответствии с принципом динамического представления исходный сигнал S (t) должен рассматриваться как сумма таких элементарных слагаемых :

(7)

В этой сумме отличным от нуля будет только один член, а именно тот, что удовлетворяет условию для t :

Теперь, если произвести подстановку формулы (6) в (7) предварительно разделив и умножив на величину шага

Переходя к пределу при 0 , необходимо суммирование заменить интегрированием по формальной переменной , дифференциал которой d ,будет отвечать величине .

Поскольку

1

получим искомую формулу динамического представления сигнала

Итак, если непрерывную функцию умножить на дельта-функцию и произведение проинтегрировать по времени, то результат будет равен значению непрерывной функции в той точке, где сосредоточен - импульс. Принято говорить, что в этом состоит фильтрующее свойство дельта-функции.

Из определения дельта-функции следует (3) . Следовательно, интеграл дельта-функции от - до t есть единичный скачок , и дельта-функцию можно рассматривать как производную единичного скачка :

Обобщенные функции как математические модели сигналов.

В классической математике полагают, что функция S(t) должна принемать какие-то значения в каждой точке оси t . Однако рассмотренная функция (t) не вписывается в эти рамки - ее значение при t = 0 не определено вообще, хотя эта функция и имеет единичный интеграл. Возникает необходимость расширить понятие функции как математической модели сигнала. Для этого в математике была введено принципиально новое понятие обобщенной функции.

В основе идеи обобщенной функции лежит простое интуитивное соображение. Когда мы держим в руках какой-нибудь предмет , то стараемся изучить его со всех сторон, как бы получить проекции этого предмета на всевозможные плоскости. Аналогом проекции исследуемой функции (t) может служить, например, значение интеграла

(8)

при известной функции (t) , которую называют пробной функцией.

Каждой функции (t) отвечает, в свою очередь, некоторое конкретное числовое значение. Поэтому говорят, что формула (8) задает некоторый функционал на множестве пробных функций (t). Непосредственно видно, что данный функционал линеен, то есть

Если этот функционал к тому же еще и непрерывен, то говорят, что на множестве пробных функций (t) задана обобщенная функция (t) . Следует сказать, что данную функцию надо понимать формально-аксиоматически, а не как предел соответствующих интегральных сумм.

Обобщенные фнкции , даже не заданные явными выражениями, обладают многими свойствами классических функкций. Так, обобщенные функции можно дифференцировать.

И в заключение следует сказать, что в настоящее время теория обобщенных функций получила широкое развитие и многочисленные применения. На ее основе созданы математические методы изучения процессов, для которых средства классического анализа оказываются недостаточными.

RSSСтраница 1 из 2 [Всего 2 записей]1 2 »


При любом использовании материалов сайта обязательна гиперссылка на сайт «Репетитор».
Разработка и Дизайн компании Awelan
www.megastock.ru
Проверить аттестат