Двойной интеграл в полярных координатах

Рефераты, курсовые, дипломные, контрольные (предпросмотр)

Тип: Реферат. Файл: Word (.doc) в архиве zip. Категория: Математика
Адрес этого реферата http://referat-kursovaya.repetitor.info/?essayId=8571 или
Загрузить
В режиме предпросмотра не отображаются таблицы, графики и иллюстрации. Для получения полной версии нажмите кнопку «Загрузить». Рефераты, контрольные, дипломные, курсовые работы предоставляются в ознакомительных целях, не для плагиата.

Пусть в двойном интеграле

(1)

при обычных предположениях мы желаем перейти к полярным координатам r и f, полагая

. (2)

Область интегрирования S разобьем на элементарные ячейки Si с помощью координатных линий r = ri (окружности) и = i (лучи) (рис.1).

Введем обозначения:

Так как окружность перпендикулярна (ортогональна) радиусам, то внутренние ячейки Si с точностью до бесконечно малых высшего порядка

малости относительно их площади можно рассматривать как прямоугольники с измерениями rj i и rj; поэтому площадь каждой такой ячейки будет равна:

(3)

Что касается ячеек Sij неправильной формы, примыкающих к границе Г области интегрирования S, то эти ячейки не повлияют на значение двойного интеграла и мы их будем игнорировать.

В качестве точки Mij Sij для простоты выберем вершину ячейки Sij с полярными координатами rj и i. Тогда декартовые координаты точки Mij равны:

И следовательно,

(3')

Двойной интеграл (1) представляет собой предел двумерной интегральной суммы, причем можно показать, что на значение этого предела не влияют добавки к слагаемым

интегральной суммы, являющиеся бесконечно малыми высшего порядка малости, поэтому учитывая формулы (3) и (3'), получаем:

(4)

где d - максимальный диаметр ячеек Sij и сумма распространена на все ячейки указанного выше вида, целиком содержащиеся в области S. С другой стороны, величины i и rj суть числа и их можно рассматривать как прямоугольные декартовые координаты некоторых точек плоскости O r. Таким образом, сумма (4) является интегральной суммой для функции

соответствующая прямоугольной сетке с линейными элементами i и ri. Следовательно

(5)

Сравнивая формулы (4) и (5), получим окончательно

(6)

Выражение

называется двумерным элементом площади в полярных координатах. Итак, чтобы в двойном интеграле (1) перейти к полярным координатам, достаточно координаты x и y заменить по формулам (2), а вместо элемента площади dS подставить выражение (7).

Для вычисления двойного интеграла (6) его нужно заменить повторным. Пусть область интегрирования S определяется неравенствами

Где r1( ), r1( ) - однозначные непрерывные функции на отрезке [ , ]. (рис 2).

Имеем

(8)

Где

Пример 1.

Переходя к полярным координатам и r, вычислить двойной интеграл

Где S - первая четверть круга радиуса R=1, с центром в точке О(0,0) (рис 3).

Так как

то применяя формулу (6),

получим

Область S определена

Неравенствами

Поэтому на основании формулы (8) имеем

Пример 2.

В интеграле

(9)

перейти к полярным координатам.

Область интегрирования здесь есть треугольник S, ограниченный прямыми y=0, y=x, x=1 (рис 4).

В полярных координатах уравнения

этих прямых записываются

следующим образом: =0,

= /4, r cos =1 и,

следовательно, область S

определяется неравенствами

Отсюда на основании формул

(6) и(8), учитывая, что

имеем



При любом использовании материалов сайта обязательна гиперссылка на сайт «Репетитор».
Разработка и Дизайн компании Awelan
www.megastock.ru
Проверить аттестат