Вычисление определенного интеграла методами трапеций и средних прямоугольников

Рефераты, курсовые, дипломные, контрольные (предпросмотр)

Тип: Курсовая работа. Файл: Word (.doc) в архиве zip. Категория: Математика
Адрес этого реферата http://referat-kursovaya.repetitor.info/?essayId=20212 или
Загрузить
В режиме предпросмотра не отображаются таблицы, графики и иллюстрации. Для получения полной версии нажмите кнопку «Загрузить». Рефераты, контрольные, дипломные, курсовые работы предоставляются в ознакомительных целях, не для плагиата.

Введение, математическое обоснование и анализ задачи.

Известно, что определенный интеграл функции типа{2203_1} численно представляет собой площадь криволинейной трапеции ограниченной кривыми x=0, y=a, y=b и y= (Рис. 1). Есть два метода вычисления этой площади или определенного интеграла - метод трапеций (Рис. 2) и метод средних прямоугольников (Рис. 3).

По методам трапеций и средних прямоугольников соответственно интеграл равен сумме площадей прямоугольных трапеций, где основание трапеции какая-либо малая величина (точность), и сумма площадей прямоугольников, где основание прямоугольника какая-либо малая величина (точность), а высота определяется по точке пересечения верхнего основания прямоугольника, которое график функции должен пересекать в середине. Соответственно получаем формулы площадей -

для метода трапеций:{2203_5}

для метода средних прямоугольников:{2203_6}

Соответственно этим формулам и составим алгоритм.

Алгоритм.2203_7

Листинг программы.

Программа написана на Tubro Pascla 6.0 для MS-DOS. Ниже приведен ее листинг:

Расчет проверялся для функции , а определенный интеграл брался от 0 до 10, точность 0,01.

В результате расчетов получаем:

Интеграл{2203_8} .

Методом трапеций {2203_9}.

Методом средних прямоугольников{2203_10} .

Также был произведен расчет с точностью 0,1:

Интеграл {2203_11}.

Методом трапеций{2203_12}.

Методом средних прямоугольников {2203_13}.

Заключение и выводы.

Таким образом очевидно, что при вычислении определенных интегралов методами трапеций и средних прямоугольников не дает нам точного значения, а только приближенное.

Чем ниже задается численное значение точности вычислений (основание трапеции или прямоугольника, в зависимости от метода), тем точнее результат получаемый машиной. При этом, число итераций составляет обратно пропорциональное от численного значения точности. Следовательно для большей точности необходимо большее число итераций, что обуславливает возрастание затрат времени вычисления интеграла на компьютере обратно пропорционально точности вычисления.

Использование для вычисления одновременно двух методов (трапеций и средних прямоугольников) позволило исследовать зависимость точности вычислений при применении обоих методов.

Следовательно при понижении численного значения точности вычислений результаты расчетов по обеим методам стремятся друг к другу и оба к точному результату.

Список литературы.

1. Вольвачев А.Н., Крисевич В.С. Программирование на языке Паскаль для ПЭВМ ЕС. Минск.: 1989 г.

2. Зуев Е.А. Язык программирования Turbo Pascal. М.1992 г.

3. Скляров В.А. Знакомьтесь: Паскаль. М. 1988 г.



При любом использовании материалов сайта обязательна гиперссылка на сайт «Репетитор».
Разработка и Дизайн компании Awelan
www.megastock.ru
Проверить аттестат