Вычисление координат центра тяжести плоской фигуры

Рефераты, курсовые, дипломные, контрольные (предпросмотр)

Тип: Реферат. Файл: Word (.doc) в архиве zip. Категория: Математика
Адрес этого реферата http://referat-kursovaya.repetitor.info/?essayId=20072 или
Загрузить
В режиме предпросмотра не отображаются таблицы, графики и иллюстрации. Для получения полной версии нажмите кнопку «Загрузить». Рефераты, контрольные, дипломные, курсовые работы предоставляются в ознакомительных целях, не для плагиата.

.Координаты центра тяжести.

Пусть на плоскости Oxy дана система материальных точек

P1(x1,y1); P2(x2,y2); ... , Pn(xn,yn)

c массами m1,m2,m3, . . . , mn.

Произведения ximi и yimi называются статическими моментами массы mi относительно осей Oy и Ox.

Обозначим через xc и yc координаты центра тяжести данной системы. Тогда координаты центра тяжести описанной материальной системы определяются формулами:

Эти формулы используются при отыскании центров тяжести различных фигур и тел.

Центр тяжести плоской фигуры.

Пусть данная фигура, ограниченная линиями y=f1(x), y=f2(x), x=a, x=b, представляет собой материальную плоскую фигуру. Поверхностною плотность, то есть массу единицы площади поверхности, будем считать постоянной и равной - для всех частей фигуры.

Разобьем данную фигуру прямыми x=a, x=x1, . . . , x=xn=b на полоски ширины ?x1, ?x2, . . ., ?xn. Масса каждой полоски будет равна произведению ее площади на плотность ?. Если каждую полоску заменить прямоугольником (рис.1) с основанием ?xi и высотой f2(?)-f1(?), где ?, то масса полоски будет приближенно равна

(i = 1, 2, ... ,n).

Приближенно центр тяжести этой полоски будет находиться в центре соответствующего прямоугольника:

Заменяя теперь каждую полоску материальной точкой, масса которой равна массе соответствующей полоски и сосредоточена в центре тяжести этой полоски, найдем приближенное значение центра тяжести всей фигуры:

Переходя к пределу при , получим точные координаты центра тяжести данной фигуры:

Эти формулы справедливы для любой однородной (т.е. имеющей постоянную плотность во всех точках) плоской фигуры. Как видно, координаты центра тяжести не зависят от плотности - фигуры (в процессе вычисления - сократилось).

Координаты центра тяжести плоской фигуры

В предыдущей главе указывалось, что координаты центра тяжести системы материальных точек P1, P2, . . ., Pn c массами m1, m2, . . ., mn определяются по формулам

.

В пределе при интегральные суммы, стоящие в числителях и знаменателях дробей, перейдут в двойные интегралы, таким образом получаются точные формулы для вычисления координат центра тяжести плоской фигуры:

Эти формулы, выведенные для плоской фигуры с поверхностной плотностью 1, остаются в силе и для фигуры, имеющей любую другую, постоянную во всех точках плотность ?.

Если же поверхностная плотность переменна:

то соответствующие формулы будут иметь вид

Выражения

и

называются статическими моментами плоской фигуры D относительно осей Oy и Ox.

Интеграл выражает величину массы рассматриваемой фигуры.

Теоремы Гульдена.

Теорема 1.

Площадь поверхности, полученной при вращении дуги плоской кривой вокруг оси, лежащей в плоскости этой кривой и не пересекающей ее, равна длине дуги кривой, умноженной на длину окружности, описанной центром тяжести дуги.

Теорема 2.

Объем тела, полученного при вращении плоской фигуры вокруг оси, не пересекающей ее и расположенной в плоскости фигуры, равен произведению площади этой фигуры на длину окружности, описанной центром тяжести фигуры.

II.Примеры.

1)Условие: Найти координаты центра тяжести полуокружности X2+Y2=a2, расположенной над осью Ox.

Решение: Определим абсциссу центра тяжести: ,

Найдем теперь ординату центра тяжести:

2)Условие: Определить координаты центра тяжести сегмента параболы y2=ax, отсекаемого прямой, х=а (рис. 2)

Решение: В данном случае поэтому

(так как сегмент симметричен относительно оси Ox)

3)Условие: Определить координаты центра тяжести четверти эллипса (рис. 3)

полагая, что поверхностная плотность во всех точках равна 1.

Решение: По формулам (*) получаем:

4)Условие:

Найти координаты центра тяжести дуги цепной линии .

Решение:

1Так как кривая симметрична относительно оси Oy, то ее центр тяжести лежит на оси Oy, т.е. Xc= 0. Остается найти . Имеем тогда длина дуги

Следовательно,

5)Условие:

Пользуясь теоремой Гульдена найти координаты центра тяжести четверти круга

.

Решение:

При вращении четверти круга вокруг оси Ох получим полушар, объем которого равен

Согласно второй теореме Гульдена, Отсюда Центр тяжести четверти круга лежит на оси симметрии, т.е. на биссектрисе I координатного угла, а потому

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Данко П.Е., Попов А.Г., Кожевникова Т.Я. "Высшая математика в упражнениях и задачах", часть 2, "Высшая школа", Москва, 1999.

2. Пискунов Н.С. "Дифференциальное и интегральное исчисления для втузов", том 2, "Наука", Москва, 1965



При любом использовании материалов сайта обязательна гиперссылка на сайт «Репетитор».
Разработка и Дизайн компании Awelan
www.megastock.ru
Проверить аттестат