Автоматизированные устройства-датчики

Рефераты, курсовые, дипломные, контрольные (предпросмотр)

Тип: Реферат. Файл: Word (.doc) в архиве zip. Категория: Технологии
Адрес этого реферата http://referat-kursovaya.repetitor.info/?essayId=3927 или
Загрузить
В режиме предпросмотра не отображаются таблицы, графики и иллюстрации. Для получения полной версии нажмите кнопку «Загрузить». Рефераты, контрольные, дипломные, курсовые работы предоставляются в ознакомительных целях, не для плагиата.
Страница 2 из 4 [Всего 4 записей]« 1 2 3 4 »

Рис. 4 Схема связей между параметрами диэлектрика

Жирными стрелками показаны связи Е D, , T Э, а тонкими стрелками изображены физические эффекты, свойственные сегнетоэлектрикам:

1 - прямой пьезоэлектрический эффект D (или q), проявляющийся в изменении поляризации кристалла действием механических напряжений;

2 - обратный пьезоэлектрический эффект Е (или U) , характеризующийся деформацией кристалла под днем электрического поля;

3 - пироэлектрический эффект T D (или q), сводящийся к изменению заряда на поверхности кристалла при изменении температуры;

4 - пьезокалорический эффект Э, проявляющийся в изменении энтропии при изменении механических напряжений.

Помимо указанных эффектов при изменении Е, , Т в кристаллах возникают побочные явления, например, изменяются диэлектрическая проницаемость, проводимость, оптические свойства и т.д.

Из указанных эффектов рассмотрим прямой и обратный пьезоэффекты, а также эффект изменения емкостной проводимости при изменении напряжения U. Преобразователи, в которых используются прямой или обратный пьезоэффекты, называются пьезоэлектрическими преобразователями.

Использование эффекта изменения емкостной проводимости в кристаллических полупроводниках обусловлено нелинейной зависимостью заряда q от приложенного напряжения U. Если зависимость q(U) линейна, то в выражении q=( q/ U) величина C= q/ U постоянна и представляет собой емкость. В случае нелинейной зависимости q(U) величина C= q/ U также является емкостью, но не постоянной, а зависящей от напряжения U, т. е. C(U). Преобразователи, основанные на использовании нелинейной зависимости емкости от напряжения в сегнетоэлектриках, называются варикондами.

Емкостные датчики можно разделить на две основные группы - датчики параметрические (недифференциальные) и датчики дифференциальные.

В схемах с параметрическими датчиками происходит преобразование входной неэлектрической величины (угла поворота оси ротора датчика) в электрическую выходную величину (частоту, ток, напряжение), функционально зависящую от входной величины.

В схемах с дифференциальными датчиками, включенными в следящие системы, с датчика снимается лишь сигнал рассогласования, который становится равным нулю в установившемся состоянии следящей системы.

Примером параметрического емкостного датчика может служить переменная емкость, включенная в контур лампового генератора (рис. 5) . Здесь при изменении угла поворота оси ротора изменяется емкость датчика и меняется частота генератора, являющаяся выходной величиной.

Рис. 5 Емкостной датчик, включенный в контур с генератором

Рис 6. Емкостной датчик, включенный в цепь переменного тока

На рис. 6 приведен другой пример использования параметрического датчика. В этом случае с изменением значения емкости С меняется ток через нее, а следовательно, и напряжение на выходе системы, падающее на сопротивлении нагрузки R , которое и является выходной величиной.

Подобные системы являются разомкнутыми системами регулирования. Основным недостатком этих схем является зависимость значения выходной величины от параметров источника питания датчика, усилителя и других элементов схемы, а также от внешних условий. В самом Деле, стоит измениться напряжению или частоте генератора, питающего датчик (рис. 6), как напряжение, частота и фаза, являющиеся выходными величинами и снимаемые с сопротивления R , также изменятся.

От этих недостатков свободны схемы с дифференциальными емкостными датчиками, включенными в замкнутую систему автоматического регулирования. В этих схемах выходной величиной является угол поворота оси отрабатывающего двигателя или другой оси, связанной с нею через редуктор. Одной из основных характеристик такой системы является чувствительность, показывающая, при каком минимальном отклонении чувствительного элемента система отработки приходит в действие. Внешние факторы - напряжение питания, температура окружающей среды и т. п. - влияют лишь на чувствительность системы; на точность системы они могут влиять лишь в той мерь, в какой она связана с чувствительностью.

Это значит, что схемы с емкостными дифференциальными датчиками, так же как и любые мостовые нулевые схемы с линейными относительно частоты и напряжения сопротивлениями в плечах, предъявляют значительно меньшие требования к стабильности источника питания.

Рис. 7 Мостовая схема с емкостным дифференциальным датчиком

В простейшем случае дифференциальный емкостный датчик представляет собой две последовательно включенные емкости, построенные конструктивно таким образом, что при увеличении одной из них другая уменьшается. Эти две емкости могут быть включены в мостовую схему (рис. 7), где два других плеча - реостатные. Если при этом напряжение, снимаемое с диагонали моста, использовать в качестве сигнала для следящей системы, перемещающей щетку потенциометра R в сторону уменьшения рассогласования, то всегда в установившемся состоянии следящей системы это напряжение u=0 в этом случае справедливо соотношение

(4)

Отсюда следует, что в схемах с дифференциальными емкостными датчиками с воздушным диэлектриком показания отрабатывающего органа (например, положение стрелки Указателя) не зависят ни от состава газа, ни от наличия в нем влаги (не выпадающей в виде капель), так как для обеих емкостей, составляющих дифференциальный датчик, меняется одинаково. Для недифференциальных же схем такое влияние может наблюдаться, хотя и в небольших пределах, так как для воздуха с влажностью 0% =l.0006, а для воздуха с влажностью 100% при t=+20°С =l.0008. В этих схемах эта величина составит соответственно погрешность примерно 0,02%, в то время как от некоторых систем с емкостными дифференциальными датчиками удалось добиться более высокой точности.

В емкостных преобразователях емкость С может меняться или за счет изменения параметров конденсатора , s, . При этом выполняются функции преобразования неэлектрических величин в изменение емкости или производится модуляция емкости, что имеет место в емкостных модуляторах, ЭС генераторах и др.

При работе преобразователя последовательно с его емкостью С включается сопротивление R (см. рис. 3), специально предусмотренное или представляющее собой сопротивление подводящих проводов. В зависимости от соотношения сопротивлений R и 1/j C преобразователь будет работать в разных режимах. Если

заряд конденсатора q CU = const, т. е. преобразователь работает в режиме заданного заряда. В этом случае

и выходным параметром преобразователя является переменная составляющая напряжения U . Этот режим реализуется, в частности, на высоких частотах. Если

то падение напряжения будет и U U const, т. е. преобразователь работает в режиме заданного напряжения. Для такого режима

и выходной величиной является ток. Такой режим имеет место на малых частотах.

При питании емкостных преобразователей переменным напряжением U=U sin t между несущей частотой и наибольшей частотой измеряемого сигнала должно сохраняться определенное соотношение. Если изменение емкости преобразователя, обусловленное измерительным сигналом, меняется по закону

В этом выражении первый член в скобках характеризует несущее колебание, второй член пропорционален полезному измерительному сигналу, а третий член является помехой. Для сведения помехи к допускаемому значению необходимо удовлетворить условию / l.

Поскольку емкости преобразователей малы и редко превышают 50-100 пФ, то необходимо учитывать сопротивление утечки изоляции R , паразитную емкость С между электродами и заземленными элементами, а также сопротивление Д и индуктивность L проводящих кабелей. На Рис.8 дана эквивалентная схема емкостного преобразователя. Необходимость учета всех указанных факторов возникает на достаточно высоких частотах (обычно свыше 10 МГц). Применяемые в емкостных преобразователях диэлектрики неидеальны, и им свойственны потери. При идеальных диэлектриках сдвиг фаз между током и напряжением равен /2, а если имеются потери, то этот сдвиг уменьшается на угол , называемый углом потерь. Обычно вместо угла рассматривается tg , который для эквивалентной схемы на Рис.8,б равен tg = 1/ C R .

RSSСтраница 2 из 4 [Всего 4 записей]« 1 2 3 4 »


При любом использовании материалов сайта обязательна гиперссылка на сайт «Репетитор».
Разработка и Дизайн компании Awelan
www.megastock.ru
Проверить аттестат